
INSA Lyon
TC Department

IST-Database and Data Mining

2021/2022 - 1st Semester
November 8th, 2021

DBM1: The 2020 Tokyo Paralympics

Authors
Katharina Alefs, katharina.alefs@insa-lyon.fr, RWTH Aachen University, Germany

João Marques, joao.dos-santos-marques@insa-lyon.fr, IST Instituto Superior Técnico, Portugal



IST-Database and Data Mining

1 Introduction

This report summarizes our project work conducted as part of the IST-Database and
Data Mining course on concepts concerning the design and the use of databases.

It includes a general presentation of the dataset that the project is based on, insights
into our design decisions, the corresponding ER diagram and a run-through of the im-
plementation steps. We will conclude by highlighting problems that we faced during the
implementation and how we have solved them.

2 Dataset and Preprocessing

The dataset that we have decided to work with contains data on the 2020 Tokyo
Paralympic Games and can be obtained on Kaggle (Data). 4426 Athletes, 212 Teams from
162 Countries participated and competed against each other. The data gives information
on the participating athletes and coaches in the Paralympics, the countries that they
represent and the events they take part in. Moreover, the paralympic-medals.csv file
gives information on the teams that won medals.

We made a few adjustments in preprocessing steps to gain new insights as well as
make it easier to handle the data. This included splitting the ’Name’ column for athletes
and coaches into First and Last Name based on capitalization and replacing the ’Female’
and ’Male’ in the Gender column by ’F’ and ’M’.

Upon suggestion, we also added a year column for the medalists to distinguish be-
tween the different Paralympic editions and generate more interesting queries. Using
Mockaroo, we added mock data for the athletes to test these queries.

3 Database Schema and ER Diagram

Figure 1: ER Diagram Paralympics

1

https://www.kaggle.com/shivagovindasamy/2020-tokyo-paralympics


IST-Database and Data Mining

The first entity to be created was the athlete, since almost all the information and
queries are related to this one. Then, as it has a lot of information in common with
the coaches, an entity person was created, being the generalization of coach and athlete.
Moreover, an entity country was needed to be built in order to gather all the medals each
country won. To reduce redundancy of information, each person is associated through
represents with the country. An assumption made here to simplify our study case is
that each person only represents one country, so that it could be implemented as one
column of person.

Since the athletes are enrolled in sports, the association between both entities seemed
logic and the chosen cardinalities enable a player to enroll in several sports during several
sessions (thanks to the year attribute). Each sport represents a discipline, and each one
of those have events. We considered this as a weak entity since an event should not exist
without a sport.

Finally, the medalists were the hardest to model, but each instance of it represents
a relation between an athlete and an event (e.g. ”Michael Phelps (athlete) won 100M
Man swimming (event)”). It was ”cleaner” to model it that way than as part of the event
entity, since an event can be won by a team. The medal type and the year attributes
enable distinguishing the type of medal won and the time of victory.

4 Implementation of the Database

With the data preprocessed and the ER-Diagram set, the PostgreSQL implementa-
tion started.

At first, all the entity tables were created, assigning the respective attributes. After
that, it’s primary keys were identified and stated according to the ER-Diagram. From
that, we set some constraints: athletes and coaches need to exist in the person relation,
each person’s country has to exist in the country table, all the events have to be associated
with a sport (those three are all foreign key constraints) and the gender of an athlete
must match a certain format (check constraint).

Finally, we created the tables for the associations. The represents, as it inherits
a one to many relationship, is just a variable in the person table with a Foreign Key
constraint to the country table. The enrolled relationship is a table with the primary
keys of person and sport and with a year variable (these three together form a composed
primary key to this table). At last, the medalists table has the athlete id, the event name
and sportcode (since they both are needed to identify the event uniquely), the medaltype
of the winner and the year he/she won. The majority of the constraints are foreign key
constraints similar to the previous ones but we implemented an extra constraint to check
if the set of attributes (id, sportcode, year match the enrolled table (since an athlete needs
to be enrolled in order to win an event). We assume here that each athlete can not win
more than one medal for the same event in the same year.

The biggest problem we faced during this process was that the athlete and coaches
instances did not have an ID in the .csv file at hand. By that, we set a DEFAULT insertion
in the ID of the table where if no ID is given, it is set sequentially and automatically.

5 Populating the Database

After building all the tables in PostgreSQL, as the data was already preprocessed
and the majority of problems addressed, we just needed to write some python scripts in

2



IST-Database and Data Mining

order to fill the database. For this purpose, we used the library psycopg2.
After building them, the order in which we run the scripts to populate is really

important since we need to first populate the tables that do not rely on others (e.g. the
country table and the sports table) and then all the ones that reference the ones already
inserted and so one and so forth. By that, the insertion order was: country, sports,person,
athlete, coach,enrolled, events and medalists. In all these python files we check the tables
before doing some operation in order to detect if we are inserting something new, adding
more to the already added person (e.g. a player that is enrolled in several sports) and
prevent duplicates and redundancy. Apart from the python scripts, we wrote a sql file
with some mock data insertions in order to accomplish results in queries 7 and 8 (see
section below), which the professor added to our project.

While populating our database, we realized that splitting the person’s names into
first and last name based on capitalization was a big mistake and probably should have
been reversed immediately. We sticked with it though and tried to treat edge cases
accordingly (as for example last names like McGREGOR were giving us a hard time).
Another problem faced during the insertion was ensuring the correct order of transactions
and choosing the right order of insertion (e.g. an athlete first has to be inserted in the
person table and than in the athlete one). Another problem we took care of was that
there was no table for events prior. Because of that, while checking the medalists.csv we
checked if the event existed already in the database, otherwise it was needed to be added
before adding the medalists.

Seemingly smaller problems such as random spaces in the middle of the input data
took an unproportional amount of time to fix.

The repository with the code used can be found here.

6 SQL Queries

The questions we wanted to answer with our database were:

1. Number of athletes that where enrolled per discipline?

2. Which first name was the 2nd most popular among the athletes?

3. How many gold, silver and bronze medals did each country win? (medal tally)

4. For each year (1980 - 1990), how many athletes were born then and what are their
names (sorted alphabetically)?

5. The birth year of athletes that won exactly 1 gold and 1 silver and 1 bronze medal?

6. From all the winning teams across all events, which team has the most members?
What are their names?

7. Is there a female athlete that won a medal in two different disciplines in two different
editions?

8. Is there any athlete that skipped one edition but then performed better then his/her
former participation?

This section was harder than expected since some queries seemed easier to write
before we had the data at our hands. Nevertheless, all of them were achieved, having set
some assumptions first:

3

https://github.com/Sargazzo/DBM1


IST-Database and Data Mining

• The query 4 was split in two queries;

• In query 8, we considered that ”improving performance” is not winning a medal at
first and than winning a medal. Otherwise the query would be too big because we
would have to check improvement for each medal type (but this could be done with
UNION clause).

There were no big problems during this section after the assumptions were made but
some of the queries took us longer than predicted. The most difficult query to build was
probably the last one since it involves a lot of tables and operations at the same time
while other big queries like the 4th are almost two same queries put together. The SQL
implementation of our queries can be found in the Queries.sql file.

7 Advanced Features and Fullstack Development

We added indexes to our database in order to verify wehther they would improveme
performance. The indexes we used were the B-Tree index(for query 4 - on the date of birthday)
and the Hash index (for the 2nd - on first name in the get first name - and 8th - on year
- queries). The code to insert the indexes can be found in the file Queries.sql as well).

To test the performance, we computed the average of running the query 10 times
with and without an index. The results can be found in the following table:

Type Query Avg.Time Without Index [ms] Avg.Time With Index [ms]

B-Tree 4 81,25 66,25

Hash 2 174,125 169,778

Hash 8 326,125 327,35

Table 1: Index performance comparison.

We were not expecting results since we do not have data in high quantities, but we
achieved some speed improvement, especially on the B-Tree index (which makes sense
since we are selecting an interval of values). Nevertheless, the response time for query 8
increased even when adding the index to the tables medalists and enrolled (the result
shown is the best obtained - with 2 indexes).

Probably, if we had millions of records and the selection was really specific (only few
records being selected), there the indexes would make a huge difference.

Regarding transactions, we used them a lot during the insertion process in the scripts.
Before inserting something, we always checked if there was already a similar insertion in
the table. When getting the id of the person inserted to insert in the table athletes, we
had to make sure the transaction before already happened in order to correctly use the
id for the next table.

We created also a website to visualize the results of the queries:

• https://web.tecnico.ulisboa.pt/ist190114/main.cgi

In here, Python was used as a CGI. The same database used on the project was built
through a server available for students from the university ”Instituto Superior Técnico”
and populated accordingly.

4

https://web.tecnico.ulisboa.pt/ist190114/main.cgi


IST-Database and Data Mining

8 Conclusion

We managed to set up a database for the Tokyo Paralympics and implemented
Queries in SQL to answer questions concerning the data at hand. We faced certain
complications which in the end gave us a deeper understanding of best-practices and our
data. In hindsight we could have chosen the queries more strategically, since just making
them very complex did not lead to versatile queries. The process was a lot of fun and we
are looking forward to explore our data set further in the upcoming Data Mining project.

5


	Introduction
	Dataset and Preprocessing
	Database Schema and ER Diagram
	Implementation of the Database
	Populating the Database
	SQL Queries
	Advanced Features and Fullstack Development
	Conclusion

