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Types of Data Sets: (1) Record Data

. Person:
QO Relational records Pers ID] Sumame | Frst Name ]| City
0 Miller Paul London
L] L] AI " | .,
 Relational tables, highly structured | onego varo | Valencia_|— no retation
E Huber Urs Zurich
1 1 1 3 Blanc Gaston Paris
d Data matrix, e.g., numerical matrix, crosstabs 3 o
4 Bertolini Fabrizio Rom
china England France Japan USA Total Ca r
Active Outdoors Crochet Glove 12,00 4.00 1.00 240,00 257.00
Car_ID Model Year Value Pers_ID
Active Outdoors Lycra Glove 10.00 6.00 323.00 339.00
101 Bentley 1973 100000 0
InFlux Crochet Glove 3.00 6.00 8.00 132,00 149,00
InFlux Lycra Glove 2.00 143,00 145,00 102 Rolls ROyCE’ 1965 330000 0
Triumph Pro Helmet 3.00 1.00 7.00 333.00 344,00 103 Peugeot 1993 500 3
Triumph Vertigo Helmet 3.00 22.00 474.00 499,00 104 Ferrari 2005 150000 4
Xtreme Adult Helmet .00 8.00 7.00 2.00 251.00 276.00 105 Renault 1998 2000 3
Xtreme Youth Helmet 1.00 76.00 77.00 106 Renault 2001 7000 3
Total 14,00 43.00 54.00 3.00( 1,972.00( 2,086.00 107 Smart 1999 2000 2
Qd Transaction data B . 2
___ @ o B o o © = 3 @
=X = (o) )
TID Items S| 8 |To| 2|5 |3 |[°F 2 cé g
1 Bread, Coke, Milk
2 Beer, Bread Document 1 3lo|s5|o0o|lz2|6|o0o]z2]0]2
3 Beer, Coke, Diaper, Milk
= = Document 2 0 7 0 2 1 0 0 3 0 0
4 Beer, Bread, Diaper, Milk

d Document data: Term-frequency vector (matrix) of text documents




Types of Data Sets: (2) Graphs and Networks

d Transportation network

Q World Wide Web %i: ‘ ) f
g | ¢ .‘

-‘oo o“ 0
L

& Metro is accessible.

0 Molecular Structures . g0k

A Social or information networks



Types of Data Sets: (3) Ordered Data

d Video data: sequence of images

ad Temporal data: time-series

Time Series Plot of quakes
454
1 [
35 I ( T‘
1 W
304 |
1. Ml g I
1 1 N4 1 1
3 "JX\'LM.M'J‘ 1:‘1 1AW 1A 1.
BT 1| (8 VAT U m
ol " R ."l lﬂd fﬂv \ sﬂ“,. yb Human
T [ —
104 s \/ { ” :
5 : ' ﬁ Human
T T T T T T T T T T T Chimpanzee
1 10 20 30 40 50 60 70 80 90 99
Index Macaque
Human
C:impanzee
Macaque

ial Data: ' e
QO Sequential Data: transaction sequences e '_-l—
- T -

Human a s a
Chimpanzee G --- T A
Macaque T A N T G

d Genetic sequence data




Types of Data Sets: (4) Spatial, image and multimedia Data

Political/
Administrative
Boundaries

d Spatial data: maps

Streets

Parcels

Land Usage

Elevation

Real World

d Image data:



Important Characteristics of Structured Data

d Dimensionality

- Curse of dimensionality
Q Sparsity

d Only presence counts

3 Resolution

- Patterns depend on the scale
3 Distribution

- Centrality and dispersion



Data Objects

0 Data sets are made up of data objects
d A data object represents an entity
d Examples:
O sales database: customers, store items, sales
 medical database: patients, treatments
O university database: students, professors, courses
Q Also called samples, examples, instances, data points, objects, tuples
O Data objects are described by attributes

ad Database rows - data objects; columns = attributes



Attributes

a Attribute (or dimensions, features, variables)
A data field, representing a characteristic or feature of a data object.
d E.g., customer ID, name, address

a Types:

Nominal (e.g., red, blue)

Binary (e.g., {true, false})

Ordinal (e.g., {freshman, sophomore, junior, senior})

O O 0O O

Numeric: quantitative
d Interval-scaled: 100°C is interval scales
O Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K
Q Ql: Isstudent ID a nominal, ordinal, or interval-scaled data?
d Q2: What about eye color? Or color in the color spectrum of physics?
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Attribute Types

ad Nominal: categories, states, or “names of things”
2 Hair_color ={auburn, black, blond, brown, grey, red, white}
d marital status, occupation, ID numbers, zip codes
O Binary
2 Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important

d e.g., gender
d Asymmetric binary: outcomes not equally important.

d e.g., medical test (positive vs. negative)
d Convention: assign 1 to most important outcome (e.g., HIV positive)
a Ordinal

2 Values have a meaningful order (ranking) but magnitude between successive
values is not known

3 Size ={small, medium, large}, grades, army rankings
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Numeric Attribute Types

d Quantity (integer or real-valued)
a Interval
d Measured on a scale of equal-sized units
3 Values have order
Q E.g., temperature in C'or F°, calendar dates
3 No true zero-point
a Ratio
d Inherent zero-point

d We can speak of values as being an order of magnitude larger than the unit
of measurement (10 K" is twice as high as 5 K°).

a e.g., temperature in Kelvin, length, counts, monetary quantities
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Discrete vs. Continuous Attributes

O Discrete Attribute
d Has only a finite or countably infinite set of values
d E.g., zip codes, profession, or the set of words in a collection of documents
d  Sometimes, represented as integer variables
O Note: Binary attributes are a special case of discrete attributes
O Continuous Attribute
O Has real numbers as attribute values
O E.g., temperature, height, or weight

0 Practically, real values can only be measured and represented using a finite
number of digits

0 Continuous attributes are typically represented as floating-point variables
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Basic Statistical Descriptions of Data

aQ Motivation
d  To better understand the data: central tendency, variation and spread

Q Data dispersion characteristics

1.0

d  Median, max, min, quantiles, outliers, variance, ... |

ad Numerical dimensions correspond to sorted intervals |

I,l:
l,[:
IJ:
I,l:

0 Data dispersion: 2N
0 Analyzed with multiple granularities of precision” "}

0.2

d  Boxplot or quantile analysis on sorted intervals

0.0

A Dispersion analysis on computed measures T

ad  Folding measures into numerical dimensions

d  Boxplot or quantile analysis on the transformed cube
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Measuring the Central Tendency: (1) Mean

O Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size.

Nln.ﬂ >

A Trimmed mean:
 Chopping extreme values (e.g., Olympics gymnastics score computation)
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Measuring the Central Tendency: (2) Median

a Median:

0 Middle value if odd number of values, or average of the middle two values otherwise

d Estimated by interpolation (for grouped data):

age frequency
1-5 200
6—15 450
1620 300
21-50 1500
51-80 700
81-110 44

Sum before the median interval

Low interval limit

Interval width (L, — L,)

Ywidth
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Measuring the Central Tendency: (3) Mode

d Mode: Value that occurs most frequently in the data

d Unimodal _ __
3 Empirical formula: Mean.
. a'l' ==
mean —mode = 3 x (mean — median) / Median

Right skewed distribution: Mean is to the right

a Multi-modal

D Blmodal § )0.4, i é‘:ﬁ{i{%ﬁé '
"N /N
a Trimodal * g \\ / \\
s 7 ﬂ \
- %U\Mﬁ LR
BEPSS OSSP &
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Symmetric vs. Shkewed Data

ad Median, mean and mode of symmetric,
positively and negatively skewed data

Mode Mean

positively skewed

symmetric

Mean
Median
Mode

negatively skewed

Mean Mode
1 1 1

" Median




Properties of Normal Distribution Curve

& — ————Represent data dispersion, spread — —————

99.7% of the data are within
< 3 standard deviations of the mean >
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation

-

A\ 4

\r-—

u— 30 u— 20 U— 0 I u+o U+ 20 i+ 30

b Represent central tendency




Measures Data Distribution: Variance and Standard Deviation

d Variance and standard deviation (sample: s, population: o)
d Variance: (algebraic, scalable computation)
d Q: Carxou compute it incrementally and efficiently?

N
Z(x —X)’ = Zx ——(Zx)

Z_L 5 . 2:_ 2_ 2
—N;(xi n N;xi 7

0 Standard deviation s (or o) is the square root of variance s?(or g?

20
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Graphic Displays of Basic Statistical Descriptions

ad Boxplot: graphic display of five-number summary
Histogram: x-axis are values, y-axis repres. frequencies

Quantile plot: each value x; is paired with f; indicating that approximately 100 f; %
of data are <x;

ad Quantile-quantile (g-q) plot: graphs the quantiles of one univariant distribution
against the corresponding quantiles of another

Q Scatter plot: each pair of values is a pair of coordinates and plotted as points in the
plane



Measuring the Dispersion of Data: Quartiles & Boxplots

QO Quartiles: Q; (25 percentile), Q; (75 percentile)
Q Inter-quartile range: IQR = Q;—Q, o L—Whisker
Q Five number summary: min, Q,;, median, Q3;, max B )
0 Boxplot: Data is represented with a box Median—> -
O Q, Qg, IQR: The ends of the box are at the first and
third quartiles, i.e., the height of the box is IQR 01—’5 lﬁ’jvmsker
O Median (Q,) is marked by a line within the box Min—p = |
O Whiskers: two lines outside the box extended to L

Minimum and Maximum
2 Outliers: points beyond a specified outlier threshold, plotted individually

3 Outlier: usually, a value higher/lower than 1.5 x IQR

22



Visualization of Data Dispersion: 3-D Boxplots

23
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Histogram Analysis

Histogram

Q Histogram: Graph display of tabulated 4.
frequencies, shown as bars

d Differences between histograms and bar charts %

 Histograms are used to show distributions of
variables while bar charts are used to compare

. 10
variables 51{ '
' il «
- Histograms plot binned quantitative data while 0 ”“ I . T S —
. 10000 30000 50000 70000 90000
bar charts plot categorical data , . _ ,
Olympic Medals of all Times (till 2012 Olympics)
O Bars can be reordered in bar charts but notin ...

histograms

0 Differs from a bar chart in that it is the area of o o
the bar that denotes the value, not the height °" ===
as in bar charts, a crucial distinction when the B
categories are not of uniform width



Riccardo Tommasini
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Histograms Often Tell More than Boxplots

>

a The two histograms shown in the left
may have the same boxplot
representation

O The same values for: min, Q1,
median, Q3, max

d But they have rather different data
distributions
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Quantile Plot

Q Displays all of the data (allowing the user to assess both the overall behavior and
unusual occurrences)

d Plots quantile information

O For a data x; data sorted in increasing order, f; indicates that approximately 100
f% of the data are below or equal to the value x;

140 -
120 -

Unit price ($
e
N OB N ® D
o O o o O

4

L 4

&

L ¢

¢

¢

0.000 0.250 0.500 0.750 1.000

f-value



Branch 2 (unit price $)
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Quantile-Quantile (Q-Q) Plot

120 -
110 -
100 -

\©
e
1

Graphs the quantiles of one univariate distribution against the corresponding
guantiles of another

View: Is there is a shift in going from one distribution to another?

Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.
Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Normal Q-Q Plot of Credit card debt in thousands
< 157
10
e ¢
E
g
-5-1
T T T 1 1
50 60 70 80 90 100 110 120 2 T T T T o
Branch 1 (UIlit Price $) Observed Value




Items sold

Scatter plot

Q Provides a first look at bivariate data to see clusters of points, outliers, etc.
A Each pair of values is treated as a pair of coordinates and plotted as points in the

plane
o e 1952
700 - 80 o oo oS08 1982
° o o0 Fon * 2007
600 N . Y P ey
7 Q s & . ©
500 ] ‘ " " ’ " ‘ ’ ° .o o.oﬁ' N e °
”‘ ’ ¢ ) e '.0° ... % % .
400 . & gl
¢ ‘ ¢ g 60 o o o. S o ‘o.' A AL
300 - "“”‘ 'S :é— .. ..o. :' o 0. % : @ ¢ o
200 ] “q_;) 50 .. : ... ..o‘ : 0. ‘
- ® o * 2° e oo
100 . el ol teg * %%
40 ¢ ° g ‘. ’ . 9 ° o
0 T T T T T T | e S o0 i °
0 20 40 60 80 100 120 140 o0, e ‘
Unit price ($) - *et ’
1000 : 5 10k . 5 100k

GDP per Capita
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Positively and Negatively Correlated Data

°
e *°
PP -
o o
¢ Y
e ®
°
e o
°
e®s s ®
[ J
..‘...‘.
[ J ..‘.
“ [ J “
[ J [ J

The left half fragment is

positively correlated

The right half is negative

correlated
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Uncorrelated Data
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Standardizing Numeric Data

Q Z-score: z= XTH
O
0 X:raw score to be standardized, p: mean of the population, o: standard deviation

0 the distance between the raw score and the population mean in units of the
standard deviation

0 negative when the raw score is below the mean, “+” when above
Q An alternative way: Calculate the mean absolute deviation

S, —1(| X, —m, |+ x, —mf|+...+|xnf—mf|)

where 1
m,= (x +X, et X, )
X —m
. , = i
0 standardized measure (z-score): if g

d Using mean absolute deviation is more robust than using standard deviation
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Similarity, Dissimilarity, and Proximity

a Similarity measure or similarity function
Areal-valued function that quantifies the similarity between two objects
d  Measure how two data objects are alike: The higher value, the more alike
d Often falls in the range [0,1]: O: no similarity; 1: completely similar

Q Dissimilarity (or distance) measure
- Numerical measure of how different two data objects are
d Insome sense, the inverse of similarity: The lower, the more alike
d  Minimum dissimilarity is often O (i.e., completely similar)
0 Range [0, 1] or [0, e=), depending on the definition

ad Proximity usually refers to either similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

O Data matrix

A data matrix of n data points with / dimensions

a Dissimilarity (distance) matrix

d

n data points, but registers only the distance d(i, j)

(typically metric) ; »

Usually symmetric, thus a triangular matrix

Distance functions are usually different for real, boolean,
categorical, ordinal, ratio, and vector variables

Weights can be associated with different variables based
on applications and data semantics

X2

x22

xn2

d(n,2)




Example: Data Matrix and Dissimilarity Matrix

T Data Matrix
X; X4‘

point | attributel | attribute2

4 x1 | 2
x2 3 5
x3 2 0
x4 4 5

2 *Xl

Dissimilarity Matrix (by Euclidean Distance)
x1 x2 x3 x4
N x1 0
i3 > x2 3.61 0

0 2 4 3 224 5.1 0

x4 4.24 1 5.39 0

57
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Distance on Numeric Data: Minkowski Distance

ad Minkowski distance: A popular distance measure

d(i,j)=1\’/| Xit =X [” =+ x;, X 7+t g, — X i

where i= (X, X, ..., Xy) and j = (x;4, X;p, ..., X;)) are two /-dimensional data
objects, and p is the order (the dlstance so defined is also called L-p norm)

Q Properties
3 d(i, j)>0ifi=#j,andd(i, i) = 0 (Positivity)
3 d(i, j) =d(j, i) (Symmetry)
2 d(i, j) <d(i, k) + d(k, j) (Triangle Inequality)
d A distance that satisfies these properties is a metric

d Note: There are nonmetric dissimilarities, e.g., set differences
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$pecial Cases of Minkowski Distance

Q p=1: (L, norm) Manhattan (or city block) distance

2 E.g., the Hamming distance: the number of bits that are different between

two binary vectors .
d(l,]) :| Xin =X ) |+|x12 — X |+'°'+ | X — X1 |

a p=2: (L, norm) Euclidean distance

.. 2 2 2
d(la]):\/|xi1_xj1| +|xi2_xj2| +"'+|xil_xﬂ|

aQ p—> o (L, norm, L _norm) “supremum” distance

max

d The maximum difference between any component (attribute) of the vectors

. . . l
6,3) =t {00+ o =l - o — 2l =



Example: Minkowski Distance at Special Cases

Manhattan (L,)

L

x1

x3

x4

x1

x2

x3

x4

AW | |Dn|O

Euclidean (L,)

L2

x1

x3

x4

x1

0

x2

3.61

x3

2.24

x4

424

5.39

Supremum (L_)

Lo

x1

x4

x1

x2

x3

point |attribute 1 | attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5
V'S
X; X T
4
2 ’Xl
© X3
0 2

60

x4

W I |W |O
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Example: Minkowski Distance at Special Cases

Manhattan (L,)

L

x1

x3

x4

x1

point |attribute 1 | attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

x2

x3

x4

AW | |Dn|O

Euclidean (L,)

L2

x1

x3

x4

x1

0

x2

3.61

x3

2.24

x4

424

5.39

Supremum (L_)

Lo

x1

x4

x1

x2

x3

x4

W I |W |O
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Example: Minkowski Distance at Special Cases

Manhattan (L,)

L

x1

x3

x4

x1

point |attribute 1 | attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

x2

x3

x4

AW | |Dn|O

/

Euclidean (L,)
1.2 x1

x3

x4

/

x1

0

x2

3.61

/

x3

2.24

x4

424

5.39

Supremum (L_)

Lo

x1

x4

x1

x2

x3

60

N P

x4

W I |W |O
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Example: Minkowski Distance at Special Cases

Manhattan (L,)

point |attribute 1 | attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5
. .
X X
4
2 ‘Xl
© X3
0 2 4

60

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0
Euclidean (L,)

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39
Supremum-{t_)

L, x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5
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Proximity Measure for Binary Attributes

ad A contingency table for binary data

Object j
1 0 sum
Object / 1 J gt
8 t s+t
sum q+s rt p d(i ) r+S
d Distance measure for symmetric binary variables A g=r-=8-Ft

FL. 5% = e =R
ad Distance measure for asymmetric binary variables: (45 1) = g+71+ s

A Jaccard coefficient (similarity measure for g
asymmetric binary variables): SUM Jaccard(t, J) = g+7+ 8

O Note: Jaccard coefficient is the same as (a concept discussed in Pattern Discovery)

sup(i, j) _ q
sup(i) + sup(j) — sup(i,j) . (¢+7)+(g+s)—¢

coherence(i, j) =



Example: Dissimilarity between Asymmetric Binary Variables

Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jim M Y P N N N N

1
Jack

Mary

d Gender is a symmetric attribute (not counted in) S ol 3
d The remaining attributes are asymmetric binary Jim
Q LetthevaluesY and P be 1, and the value N be O 1 1 1
A Distance: d(i, j) = rev s -O S
g~=T-r S Yol 2 4
. 0+1 Mary
d K, = = 0.33
(Jack.mary) =S o1
d(jack, jim)y=—31 _ _ 0.67 1 1 1 2
1+1+1
1+ 2 - o 2 2 4
d(jim, = = 0.75
(im,mary) = > 5,3 3 6

62
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Proximity Measure for Categorical Attributes

Q Categorical data, also called nominal attributes
d  Example: Color (red, yellow, blue, green), profession, etc.

ad Method 1: Simple matching

d  m: # of matches, p: total # of variables

d(i, ) =H5"

ad Method 2: Use a large number of binary attributes

d Creating a new binary attribute for each of the M nominal states



64

Ordinal Variables

Q An ordinal variable can be discrete or continuous
aQ Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
Q Can be treated like interval-scaled
J  Replace an ordinal variable value by its rank: 7., € ..M f}
- Map the range of each variable onto [0, 1] by replacing i-th object in
the f-th variable by =1

Z.

;=
M, 1

d Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
O Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3

d  Compute the dissimilarity using methods for interval-scaled variables


Riccardo Tommasini


65

Attributes of Mixed Type

ad A dataset may contain all attribute types
d  Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
d One may use a weighted formula to combine their effects:
p
(1) (/)
szj d;
d(i, j) ="

()

ad Iff is numeric: Use the normalized distance

Q  Iff is binary or nominal: d;" = 0 if x;= x; or d;{) = 1 otherwise

a Iff is ordinal

rl.—l
L)

M, 1

Q Compute ranks z; (wherez,, =

O Treat z; as interval-scaled



Cosine Similarity of Two Vectors

O

A document can be represented by a bag of terms or a long vector, with each
attribute recording the frequency of a particular term (such as word, keyword, or

phrase) in the document
Document  teamcoach hockey baseball soccer penalty score win loss season

Document] 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 /4 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

Other vector objects: Gene features in micro-arrays

Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

Cosine measure: If d, and d, are two vectors (e.g., term-frequency vectors), then
d ed,

1 d ([ x|l d, |

where e indicates vector dot product, | |d| |: the norm of vector d

cos(d,,d,) =
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Example: Calculating Cosine Similarity

a Calculating Cosine Similarity: d ed,

coS ( 19 2)_ Sim(A,B)ZCOS(Q):A—B

Id, [Ix|1d, | ]3|
where e indicates vector dot product, | |d| |: the length of vector d

A Ex: Find the similarity between documents 1 and 2.
d,=(5030200,2,0,0) d,=(3,0,201,101,0,1)
First, calculate vector dot product

d  Then, calculate | |d,| | and ||d,] |

a  Calculate cosine similarity: cos(d,, d, ) =

0


Riccardo Tommasini
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Example: Calculating Cosine Similarity

Pt
A Calculating Cosine Similarit 4.B
P Costddy) = 0 sim(d,B) = c0s(0) = "o
Id, [Ix|1d, | 8] Ao

where e indicates vector dot product, | |d| |: the length of vector d
A Ex: Find the similarity between documents 1 and 2.
d,=(5030200,2,0,0) d,=(3,0,201,101,0,1)
First, calculate vector dot product
d,ed,=5X3+0X0+3X2+0X0+2X1+0X1+0X1+2X1+0X0+0X1=25
a Then, calculate | |d,|| and | |d,] ]|

1d, [=V5%5+0x0+3%x3+0x0+2x2+0x0+0x0+2x2+0x0+0x0 =6.481
| d, ||:\/3><3+O><0+2><2+O><O+1><1+1><1+0><O+1><1+O><O+1><1 =4.12
O Calculate cosine similarity: cos(d,, d,) =25/ (6.481X4.12) =0.94




71

Chapter 2. Getting to Know Your Data

3 Data Objects and Attribute Types
3 Basic Statistical Descriptions of Data
3 Data Visualization

ad Measuring Data Similarity and Dissimilarity

Q Summary Q\\



72

Summary

d Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

d Many types of data sets, e.g., numerical, text, graph, Web, image.

d Gain insight into the data by:
Basic statistical data description: central tendency, dispersion, graphical displays
d  Data visualization: map data onto graphical primitives
Measure data similarity

ad Above steps are the beginning of data preprocessing

aQ Many methods have been developed but still an active area of research
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