

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 2. Getting to Know Your Data

D Data Objects and Attribute Types

Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets：（1）Record Data

－Relational records
\square Relational tables，highly structured
－Data matrix，e．g．，numerical matrix，crosstabs
Person：

Pers＿ID	Surname	First＿Name	City
0	Miller	Paul	London
1	Ortega	Alvaro	Valencia
2	Huber	Urs	Zurich
3	Blanc	Gaston	Paris
4	Bertolini	Fabrizio	Rom

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	$1,972.00$	$2,086.00$

Car：

Car＿ID	Model	Year	Value	Pers＿ID
101	Bentley	1973	100000	0
102	Rolls Royce	1965	330000	0
103	Peugeot	1993	500	3
104	Ferrari	2005	150000	4
105	Renault	1998	2000	3
106	Renault	2001	7000	3
107	Smart	1999	2000	2

－Transaction data

TID	Items
1	Bread，Coke，Milk
2	Beer，Bread
3	Beer，Coke，Diaper，Milk
4	Beer，Bread，Diaper，Milk
5	Coke，Diaper，Milk

	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\cong}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{W}} \\ & \stackrel{\mathrm{~N}}{3} \end{aligned}$	$<\frac{0}{0}$	$\stackrel{\text { ⿹丁口 }}{\underline{\text { I }}}$	$\begin{aligned} & \text { © } \\ & \stackrel{\circ}{\sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	こ	\％	$\begin{aligned} & \text { 志 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\square}{7} \end{aligned}$	¢ $\stackrel{\sim}{0}$ $\stackrel{\text { On }}{ }$
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

－Document data：Term－frequency vector（matrix）of text documents

Types of Data Sets: (2) Graphs and Networks

- Transportation network
- World Wide Web

- Molecular Structures
. Social or information networks

Types of Data Sets: (3) Ordered Data

- Video data: sequence of images
- Temporal data: time-series

- Sequential Data: transaction sequences
- Genetic sequence data

Human
Chimpanze
Maczaue
Macaque
Human
Chimpanzee
Macaque
Macaque
Human
Chimpanze
Macaque
Human Chimpanzee Macaque
Human
Chimpan Chimpanze Macaque

Human Chimpanzee
Macaque
Human
Human Macaque

Types of Data Sets: (4) Spatial, image and multimedia Data

- Spatial data: maps

- Image data:

Important Characteristics of Structured Data

\square Dimensionality
\square Curse of dimensionality
\square Sparsity
\square Only presence counts

- Resolution
\square Patterns depend on the scale
- Distribution
\square Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- A data object represents an entity
- Examples:
- sales database: customers, store items, sales
- medical database: patients, treatments
- university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples
- Data objects are described by attributes
- Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

- Attribute (or dimensions, features, variables)
\square A data field, representing a characteristic or feature of a data object.E.g., customer_ID, name, address
- Types:
- Nominal (e.g., red, blue)
$\square \quad$ Binary (e.g., \{true, false\})
- Ordinal (e.g., \{freshman, sophomore, junior, senior\})
- Numeric: quantitative
- Interval-scaled: $100^{\circ} \mathrm{C}$ is interval scales
- Ratio-scaled: $100^{\circ} \mathrm{K}$ is ratio scaled since it is twice as high as $50^{\circ} \mathrm{K}$
- Q1: Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

\square Nominal: categories, states, or "names of things"

- Hair_color = \{auburn, black, blond, brown, grey, red, white\}
\square marital status, occupation, ID numbers, zip codes
\square Binary
\square Nominal attribute with only 2 states (0 and 1)
\square Symmetric binary: both outcomes equally important
\square e.g., gender
\square Asymmetric binary: outcomes not equally important.
\square e.g., medical test (positive vs. negative)
\square Convention: assign 1 to most important outcome (e.g., HIV positive)
\square Ordinal
\square Values have a meaningful order (ranking) but magnitude between successive values is not known
Size $=\{$ small, medium, large $\}$, grades, army rankings

Numeric Attribute Types

\square Quantity (integer or real-valued)
\square Interval

- Measured on a scale of equal-sized units
- Values have order
- E.g., temperature in C° or F°, calendar dates
- No true zero-point
\square Ratio
- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement ($10 \mathrm{~K}^{\circ}$ is twice as high as $5 \mathrm{~K}^{\circ}$).
- e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete us. Continuous Attributes

- Discrete Attribute
- Has only a finite or countably infinite set of values
- E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
\square Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute
- Has real numbers as attribute values
- E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

\square Data Objects and Attribute Types

Basic Statistical Descriptions of Data \forall

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

- Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
- Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals
- Data dispersion:
- Analyzed with multiple granularities of precision
- Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures

- Folding measures into numerical dimensions
\square Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency: (1) Mean

- Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size.

- Weighted arithmetic mean:

$$
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}
$$

- Trimmed mean:
\square Chopping extreme values (e.g., Olympics gymnastics score computation)

Measuring the Central Tendency: (2) Median

- Median:

Middle value if odd number of values, or average of the middle two values otherwise

- Estimated by interpolation (for grouped data):

Measuring the Central Tendency: (3) Mode

- Mode: Value that occurs most frequently in the data
- Unimodal
\square Empirical formula:

$$
\text { mean }- \text { mode }=3 \times(\text { mean }- \text { median })
$$

Right skewed distribution: Mean is to the right

- Multi-modalBimodal
\square Trimodal

Symmetric us. Skewed Data

- Median, mean and mode of symmetric, positively and negatively skewed data

Properties of Normal Distribution Curve

$\leftarrow-$ - - - Represent data dispersion, spread $----\rightarrow$

Measures Data Distribution: Variance and Standard Deviation

Variance and standard deviation (sample: s, population: σ)
\square Variance: (algebraic, scalable computation)
\square Q: Cas vou compute it incrementally and efficiently?

$$
\begin{aligned}
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& \sigma^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\frac{1}{N} \sum_{i=1}^{n} x_{i}^{2}-\mu^{2}
\end{aligned}
$$

Standard deviation $s(o r \sigma)$ is the square root of variance $s^{2}\left(o r \sigma^{2)}\right.$

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_{i} is paired with f_{i} indicating that approximately $100 f_{i} \%$ of data are $\leq x_{i}$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Measuring the Dispersion of Data: Quartiles \& Boxplots

\square Quartiles: Q_{1} (25 ${ }^{\text {th }}$ percentile), Q_{3} (75 th percentile)

- Inter-quartile range: $\operatorname{IQR}=Q_{3}-Q_{1}$
- Five number summary: \min , Q_{1}, median, Q_{3}, max
- Boxplot: Data is represented with a box
$\square Q_{1}, Q_{3}$, IQR: The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- Median $\left(\mathrm{Q}_{2}\right)$ is marked by a line within the box
\square Whiskers: two lines outside the box extended to
 Minimum and Maximum
\square Outliers: points beyond a specified outlier threshold, plotted individually
\square Outlier: usually, a value higher/lower than $1.5 \times$ IQR

Visualization of Data Dispersion: 3-D Boxplots

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- Differences between histograms and bar charts
- Histograms are used to show distributions of variables while bar charts are used to compare variables
\square Histograms plot binned quantitative data while bar charts plot categorical data
\square Bars can be reordered in bar charts but not in histograms
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width

Olympic Medals of all Times (till 2012 Olympics)

[Gold ${ }^{[1]}$ Silver Bronze
Bar chart

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
\square The same values for: $\min , \mathrm{Q} 1$, median, Q3, max

- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
- For a data x_{i} data sorted in increasing order, f_{i} indicates that approximately 100 $f_{i} \%$ of the data are below or equal to the value x_{i}

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Normal Q-Q Plot of Credit card debt in thousands

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
\square The right half is negative correlated

Uncorrelated Data

Chapter 2. Getting to Know Your Data

\square Data Objects and Attribute Types

Basic Statistical Descriptions of Data

D Data Visualization

D Measuring Data Similarity and Dissimilarity

- Summary

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types

Basic Statistical Descriptions of Data

- Data Visualization

Measuring Data Similarity and Dissimilarity

- Summary

Standardizing Numeric Data

- Z-score:

$$
z=\frac{x-\mu}{\sigma}
$$

\square X: raw score to be standardized, μ : mean of the population, σ : standard deviation
\square the distance between the raw score and the population mean in units of the standard deviation

- negative when the raw score is below the mean, " + " when above
- An alternative way: Calculate the mean absolute deviation

$$
s_{f}=\frac{1}{n}\left(\left|x_{1 f}-m_{f}\right|+\left|x_{2 f}-m_{f}\right|+\ldots+\left|x_{n f}-m_{f}\right|\right)
$$

where

$$
m_{f}=\frac{1}{n}\left(x_{1 f}+x_{2 f}+\ldots+x_{n f}\right) .
$$

\square standardized measure (z-score):

$$
z_{i f}=\frac{x_{i f}-m_{f}}{S_{f}}
$$

\square Using mean absolute deviation is more robust than using standard deviation

Similarity, Dissimilarity, and Proximity

- Similarity measure or similarity function
- A real-valued function that quantifies the similarity between two objects
- Measure how two data objects are alike: The higher value, the more alike
\square Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure
- Numerical measure of how different two data objects are
- In some sense, the inverse of similarity: The lower, the more alike
- Minimum dissimilarity is often 0 (i.e., completely similar)
- Range $[0,1]$ or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
- A data matrix of n data points with / dimensions
- Dissimilarity (distance) matrix
- n data points, but registers only the distance $d(i, j)$
 (typically metric)
- Usually symmetric, thus a triangular matrix
- Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables

$$
\left(\begin{array}{cccc}
0 & & & \\
d(2,1) & 0 & & \\
\vdots & \vdots & \ddots & \\
d(n, 1) & d(n, 2) & \ldots & 0
\end{array}\right)
$$

- Weights can be associated with different variables based on applications and data semantics

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
$\boldsymbol{x} \boldsymbol{1}$	1	2
$\boldsymbol{x} \boldsymbol{2}$	3	5
$\boldsymbol{x} 3$	2	0
$\boldsymbol{x} \boldsymbol{4}$	4	5

Dissimilarity Matrix (by Euclidean Distance)

	$\boldsymbol{x} \mathbf{1}$	$\boldsymbol{x} \mathbf{2}$	$\boldsymbol{x} \mathbf{3}$	$\boldsymbol{x} \mathbf{4}$
$\boldsymbol{x} \mathbf{1}$	0			
$\boldsymbol{x} \mathbf{2}$	3.61	0		
$\boldsymbol{x} \mathbf{3}$	2.24	5.1	0	
$\boldsymbol{x} \mathbf{4}$	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

- Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[p]{\left|x_{i 1}-x_{j 1}\right|^{p}+\left|x_{i 2}-x_{j 2}\right|^{p}+\cdots+\left|x_{i l}-x_{j l}\right|^{p}}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{i}}\right)$ and $j=\left(x_{\mathrm{j} 1}, x_{\mathrm{j} 2}, \ldots, x_{\mathrm{j}}\right)$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
$\square \mathrm{d}(\mathrm{i}, \mathrm{j})>0$ if $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{d}(\mathrm{i}, \mathrm{i})=0$ (Positivity)
$\square \mathrm{d}(\mathrm{i}, \mathrm{j})=\mathrm{d}(\mathrm{j}, \mathrm{i})$ (Symmetry)
$\square \mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{k}, \mathrm{j})$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- $p=1$: (L_{1} norm) Manhattan (or city block) distance
E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i 1}-x_{j 1}\right|+\left|x_{i 2}-x_{j 2}\right|+\cdots+\left|x_{i l}-x_{j l}\right|
$$

- $p=2$: (L_{2} norm) Euclidean distance

$$
d(i, j)=\sqrt{\left|x_{i 1}-x_{j 1}\right|^{2}+\left|x_{i 2}-x_{j 2}\right|^{2}+\cdots+\left|x_{i l}-x_{j l}\right|^{2}}
$$

- $p \rightarrow \infty$: ($\mathrm{L}_{\max }$ norm, L_{∞} norm) "supremum" distance

The maximum difference between any component (attribute) of the vectors

$$
d(i, j)=\lim _{p \rightarrow \infty} \sqrt[p]{\left|x_{i 1}-x_{j 1}\right|^{p}+\left|x_{i 2}-x_{j 2}\right|^{p}+\cdots+\left|x_{i l}-x_{j l}\right|^{p}}=\max _{f=1}^{l}\left|x_{i f}-x_{j f}\right|
$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
$\mathbf{x 1}$	1	2
$\mathbf{x 2}$	3	5
$\mathbf{x 3}$	2	0
$\mathbf{x 4}$	4	5

Manhattan (L_{1})

\mathbf{L}	$\mathbf{x} \mathbf{1}$	$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	5	0		
$\mathbf{x 3}$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Supremum (L_{∞})

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
$\mathbf{x 1}$	1	2
$\mathbf{x} 2$	3	5
$\mathbf{x 3}$	2	0
$\mathbf{x 4}$	4	5

Manhattan $\left(\mathrm{L}_{1}\right)$

\mathbf{L}	$\mathbf{x} 1$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} 1$	0			
$\mathbf{x} \mathbf{2}$	5	0		
$\mathbf{x 3}$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Supremum (L_{∞})

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
$\mathbf{x 1}$	1	2
$\mathbf{x 2}$	3	5
$\mathbf{x 3}$	2	0
$\mathbf{x 4}$	4	5

Manhattan (L_{1})

\mathbf{L}	$\mathbf{x} \mathbf{1}$	$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	5	0		
$\mathbf{x 3}$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x} \mathbf{2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Supremum (L_{∞})

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
$\mathbf{x 1}$	1	2
$\mathbf{x 2}$	3	5
$\mathbf{x 3}$	2	0
$\mathbf{x 4}$	4	5

Manhattan (L_{1})

\mathbf{L}	$\mathbf{x} \mathbf{1}$	$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	5	0		
$\mathbf{x 3}$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x 1}$	0			
$\mathbf{x 2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Supremum $\left(t_{\infty}\right)$

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Proximity Measure for Binary Attributes

- A contingency table for binary data

	Object j			
Object i	1	1	0	sum
	0	q	r	$q+r$
	sum	$q+s$	t	$s+t$
		$r+t$	p	

- Distance measure for symmetric binary variables

$$
d(i, j)=\frac{r+s}{q+r+s+t}
$$

- Distance measure for asymmetric binary variables: $d(i, j)=\frac{r+s}{q+r+s}$
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$
\operatorname{sim}_{J a c c a r d}(i, j)=\frac{q}{q+r+s}
$$

- Note: Jaccard coefficient is the same as
(a concept discussed in Pattern Discovery)

$$
\operatorname{coherence}(i, j)=\frac{\sup (i, j)}{\sup (i)+\sup (j)-\sup (i, j)}=\frac{q}{(q+r)+(q+s)-q}
$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j)=\frac{r+s}{q+r+s}$

		$\sum_{\text {col }}$		3
		Jim		
		1	0	Krow
	1	1	1	2
Jack	0	1	3	4
	$\Sigma_{\text {col }}$	2	4	6

$$
\begin{aligned}
& d(j a c k, m a r y)=\frac{0+1}{2+0+1}=0.33 \\
& d(j a c k, j i m)=\frac{1+1}{1+1+1}=0.67 \\
& d(j i m, \text { mary })=\frac{1+2}{1+1+2}=0.75
\end{aligned}
$$

						Mary			
			1	0					
	1	1	1	2					
\lim	0	2	2	4					
	$\sum_{\text {col }}$	3	3	6					

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
- Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
- m : \# of matches, p : total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

- Method 2: Use a large number of binary attributes
- Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
\square Replace an ordinal variable value by its rank: $r_{i f} \in\left\{1, \ldots, M_{f}\right\}$
- Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

- Example: freshman: 0 ; sophomore: $1 / 3$; junior: $2 / 3$; senior 1
- Then distance: $d($ freshman, senior $)=1, d($ junior, senior $)=1 / 3$
\square Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$
d(i, j)=\frac{\sum_{f=1}^{p} w_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} w_{i j}^{(f)}}
$$

- If f is numeric: Use the normalized distance
\square If f is binary or nominal: $\mathrm{d}_{\mathrm{ij}}^{(\mathrm{ff})}=0$ if $\mathrm{x}_{\mathrm{if}}=\mathrm{x}_{\mathrm{j} f}$; or $\mathrm{d}_{\mathrm{ij}}^{(\mathrm{f})}=1$ otherwise
- If f is ordinal
- Compute ranks $\mathrm{z}_{\mathrm{if}}\left(\right.$ where $_{i f}=\frac{r_{i f}-1}{M_{f}-1}$)
- Treat $z_{\text {if }}$ as interval-scaled

Cosine Similarity of Two Vectors

- A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	teamcoach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- Cosine measure: If d_{1} and d_{2} are two vectors (e.g., term-frequency vectors), then

$$
\cos \left(d_{1}, d_{2}\right)=\frac{d_{1} \bullet d_{2}}{\left\|d_{1}\right\| \times\left\|d_{2}\right\|}
$$

where • indicates vector dot product, $||d||$: the norm of vector d

Example: Calculating Cosine Similarity

- Calculating Cosine Similarity

$$
\begin{aligned}
& \text { ine Similarity: } \\
& \cos \left(d_{1}, d_{2}\right)=\frac{d_{1} \bullet d_{2}}{\left\|d_{1}\right\| \times\left\|d_{2}\right\|}
\end{aligned}
$$

$$
\operatorname{sim}(A, B)=\cos (\theta)=\frac{A \cdot B}{\|A\| B \|}
$$

where \bullet indicates vector dot product, $\|d\|$: the length of vector d

- Ex: Find the similarity between documents 1 and 2 .

$$
d_{1}=(5,0,3,0,2,0,0,2,0,0) \quad d_{2}=(3,0,2,0,1,1,0,1,0,1)
$$

- First, calculate vector dot product
- Then, calculate $\| d_{1}| |$ and $\left|\left|d_{2}\right|\right|$
- Calculate cosine similarity: $\cos \left(d_{1}, d_{2}\right)=$

Example: Calculating Cosine Similarity

- Calculating Cosine Similarity:

$$
\begin{aligned}
& \text { ine Similarity: } \\
& \cos \left(d_{1}, d_{2}\right)=\frac{d_{1} \bullet d_{2}}{\left\|d_{1}\right\| \times\left\|d_{2}\right\|}
\end{aligned}
$$

$$
\operatorname{sim}(A, B)=\cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}
$$

where \bullet indicates vector dot product, $||d||$: the length of vector d

- Ex: Find the similarity between documents 1 and 2 .

$$
d_{1}=(5,0,3,0,2,0,0,2,0,0) \quad d_{2}=(3,0,2,0,1,1,0,1,0,1)
$$

- First, calculate vector dot product

$$
d_{1} \bullet d_{2}=5 \times 3+0 \times 0+3 \times 2+0 \times 0+2 \times 1+0 \times 1+0 \times 1+2 \times 1+0 \times 0+0 \times 1=25
$$

- Then, calculate $\| d_{1}| |$ and $\left|\left|d_{2}\right|\right|$

$$
\begin{aligned}
& \left\|d_{1}\right\|=\sqrt{5 \times 5+0 \times 0+3 \times 3+0 \times 0+2 \times 2+0 \times 0+0 \times 0+2 \times 2+0 \times 0+0 \times 0}=6.481 \\
& \left\|d_{2}\right\|=\sqrt{3 \times 3+0 \times 0+2 \times 2+0 \times 0+1 \times 1+1 \times 1+0 \times 0+1 \times 1+0 \times 0+1 \times 1}=4.12
\end{aligned}
$$

\square Calculate cosine similarity: $\cos \left(d_{1}, d_{2}\right)=25 /(6.481 \times 4.12)=0.94$

Chapter 2. Getting to Know Your Data

D Data Objects and Attribute Types

Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
\square Summary

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
- Basic statistical data description: central tendency, dispersion, graphical displays
\square Data visualization: map data onto graphical primitives
- Measure data similarity
- Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
a L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley \& Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2 ${ }^{\text {nd }}$ ed., Graphics Press, 2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009

