

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Types of Data Sets: (1) Record Data

Relational records

Relational tables, highly structured

Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Pers_ID	Surname	First_Name	City	
0	Miller	Paul	London	
1	Ortega	Alvaro	Valencia	 no relation
2	Huber	Urs	Zurich	
3	Blanc	Gaston	Paris	
4	Bertolini	Fabrizio	Rom	
ar				
Car_ID	Model	Year	Value	Pers_ID
Car_ID 101	Model Bentley	Year 1973	Value 100000	Pers_ID 0
Car_ID 101 102	Model Bentley Rolls Royce	Year 1973 1965	Value 100000 330000	Pers_ID 0 0
Car_ID 101 102 103	Model Bentley Rolls Royce Peugeot	Year 1973 1965 1993	Value 100000 330000 500	Pers_ID 0 0 3
Car_ID 101 102 103 104	Model Bentley Rolls Royce Peugeot Ferrari	Year 1973 1965 1993 2005	Value 100000 330000 500 150000	Pers_ID 0 0 3 4
Car_ID 101 102 103 104 105	Model Bentley Rolls Royce Peugeot Ferrari Renault	Year 1973 1965 1993 2005 1998	Value 100000 330000 500 150000 2000	Pers_ID 0 3 4 3
Car_ID 101 102 103 104 105 106	Model Bentley Rolls Royce Peugeot Ferrari Renault Renault	Year 1973 1965 1993 2005 1998 2001	Value 100000 330000 500 150000 2000 7000	Pers_ID 0 3 4 3 3

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Document data: Term-frequency vector (matrix) of text documents

Types of Data Sets: (2) Graphs and Networks

- Transportation network □ World Wide Web Ô - Metro is ac Molecular Structures
- Social or information networks

Types of Data Sets: (3) Ordered Data

□ Video data: sequence of images

Temporal data: time-series

Sequential Data: transaction sequences

Genetic sequence data

	Start
Human	GTTTTGAGG ATGTTCAACAAATGCTCCTTTCATTCCTCTATTTACAGACCTGCCGCA
Chimpanzee	GTTTTGAGG ATGTTC AATAAATGC TGC TTTC ACTCC TC TATTTAC AGACC TGCCGC A
Macaque	GTTTTGAGG ATGC TC AATAAATGC TCCTTTCATTCCTCC ATTTACAAACT IGCCGCA
Human	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
Chimpanzee	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
Macaque	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
Human	GATCTGGAGACTAA-CTCTGAAATAAATAAGCTGATTATTTATTTATTTCTCAAAACAA
Chimpanzee	GATC TGG AG AC T A A A C TC TG A A A T A A A T A AGC TG A T T A T T T A T T T T T T T T C T C A A A A
Macaque	TATCTGGAGACTAAACTC <mark>TGA</mark> AATAAATAAGCTGATTATTTATTTATTTCTCAAAACAA
Human	CAGAATACGATTTAGCAAATTACTTCTTAAGATATTATTTTACATTTCTATATTCTCCTA
Chimpanzee	CAGAATACGATTTAGCAAATTACTTCTTAAGATACTATTTTACATTTCTATATTCTCCTA
Macaque	CAGAATATGATTTAGCAAATTACCTCTTAAGATATTATTTTGCACTTCTATATTCTCCTA
Human	CCCTGAGTTGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTATACATTATG
Chimpanzee	CCCTGAGTTGATGTGTGAGCCGTATGTCACTTTCATAAAGCCAGGTATACATTATG
Macaque	CCC TG AGT TG ATG TG TG TG AGC AAT ATG TC AC TTCC AC A AGCC AGG TATATATATAC ATTACG
	HIIYSTFLSK
Human	GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAAAATTTTAAATTTC
Chimpanzee	GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAGAATTTTAAATTTC
Macaque	GACAGGTAAGTAAAAA.CATATTATTTATTCTA <mark>G</mark> GTTTTTGTCCAAGA <mark>G</mark> TTTTAAATTTC
Human	AACTGTTGCGCGTGTGTTGGTAATGTAAAACAAACTCAGTACA
Chimpanzee	AACTGTTGCGCGTGTGTTGGTAATGTAAAACAAACTCAGTACA
Macaque	AACTGTTGTGCATGTGTTGGTAACGTAAAACAAATTCAGTACG

Types of Data Sets: (4) Spatial, image and multimedia Data

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- □ A data object represents an entity
- **Examples**:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*
- Data objects are described by attributes
- □ Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

Attribute (or dimensions, features, variables)

- □ A data field, representing a characteristic or feature of a data object.
- □ E.g., customer_ID, name, address

Types:

- Nominal (e.g., red, blue)
- Binary (e.g., {true, false})
- Ordinal (e.g., {freshman, sophomore, junior, senior})
- Numeric: quantitative
 - □ Interval-scaled: 100°C is interval scales
 - Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K
- **Q1:** Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

□ Nominal: categories, states, or "names of things"

- Hair_color = {auburn, black, blond, brown, grey, red, white}
- marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - □ e.g., gender
- □ <u>Asymmetric binary</u>: outcomes not equally important.
 - □ e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

Quantity (integer or real-valued)

Interval

- Measured on a scale of equal-sized units
- Values have order
 - **E**.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - **E.g.**, zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - Median, max, min, quantiles, outliers, variance, …
- Numerical dimensions correspond to sorted intervals⁶
 - Data dispersion:
 - Analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
- Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency: (1) Mean

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

Trimmed mean:

□ Chopping extreme values (e.g., Olympics gymnastics score computation)

Measuring the Central Tendency: (2) Median

□ <u>Median</u>:

- Middle value if odd number of values, or average of the middle two values otherwise
- **Estimated by interpolation (for** *grouped data***)**:

Measuring the Central Tendency: (3) Mode

Mode: Value that occurs most frequently in the data

Unimodal
 Empirical formula:

 $mean-mode = 3 \times (mean-median)$

Right skewed distribution: Mean is to the right

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Properties of Normal Distribution Curve

Measures Data Distribution: Variance and Standard Deviation

- **\Box** Variance and standard deviation (*sample: s, population: \sigma*)
 - □ Variance: (algebraic, scalable computation)
 - Q: Can you compute it incrementally and efficiently?

Standard deviation *s* (or σ) is the square root of variance s^2 (or σ^2)

Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately $100 f_i \%$ of data are $\le x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Measuring the Dispersion of Data: Quartiles & Boxplots

- **Quartiles**: Q₁ (25th percentile), Q₃ (75th percentile)
- **Inter-quartile range**: $IQR = Q_3 Q_1$
- **Five number summary**: min, Q₁, median, Q₃, max
- **Boxplot**: Data is represented with a box
 - Q₁, Q₃, IQR: The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - \Box Median (Q₂) is marked by a line within the box
 - Whiskers: two lines outside the box extended to

Minimum and Maximum

- Outliers: points beyond a specified outlier threshold, plotted individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR

Visualization of Data Dispersion: 3-D Boxplots

Histogram Analysis

- □ Histogram: Graph display of tabulated frequencies, shown as bars
- Differences between histograms and bar charts
 - Histograms are used to show distributions of variables while bar charts are used to compare variables
 - Histograms plot binned quantitative data while bar charts plot categorical data
 - Bars can be reordered in bar charts but not in histograms
 - Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width

Olympic Medals of all Times (till 2012 Olympics)

Histogram

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i% of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- □ View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

Uncorrelated Data

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Standardizing Numeric Data

Z-score:

$$z = \frac{x - \mu}{\sigma}$$

- \Box X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- □ negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n} (|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf}).$$

standardized measure (*z-score*):

$$z_{if} = \frac{x_{if} - m_f}{S_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity, Dissimilarity, and Proximity

Similarity measure or similarity function

- A real-valued function that quantifies the similarity between two objects
- Measure how two data objects are alike: The higher value, the more alike
- □ Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- **Dissimilarity** (or **distance**) measure
 - Numerical measure of how different two data objects are
 - □ In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition
- **Proximity** usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with l dimensions
- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j)
 (typically metric)
 - Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

 $D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x2</i>	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p} + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and *p* is the order (the distance so defined is also called L-*p* norm)

Properties

- □ d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positivity)
- $\Box d(i, j) = d(j, i) (Symmetry)$
- □ $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- □ A distance that satisfies these properties is a metric
- ❑ Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square *p* = 1: (L₁ norm) Manhattan (or city block) distance
 - □ E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i, j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \dots + |x_{il} - x_{il}|$
- **\square** *p* = 2: (L₂ norm) Euclidean distance

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- □ $p \rightarrow \infty$: (L_{max} norm, L_∞ norm) "supremum" distance
 - □ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p} + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

	•			
L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	3 6		
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Manhattan (L₁)

L	x1	x2	x3	x4	
x1	0				
x2	5	0			
x3	3	6	0		
x4	6	1	7	0	

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_∞)

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Proximity Measure for Binary Attributes

A contingency table for binary data

		Ob [.]	ject <i>j</i>	
-		1	0	sum
Ohiect i	1	q	r	q+r
Object /	0	8	t	s+t
	sum	q+s	r+t	p

- Distance measure for symmetric binary variables
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- □ Jaccard coefficient (*similarity* measure for

asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q+r+s}$$

 $d(i, j) = \frac{r+s}{q+r+s+t}$

□ Note: Jaccard coefficient is the same as (a concept discussed in Pattern Discovery) $coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q+r) + (q+s) - q}$

Example: Dissimilarity between Asymmetric Binary Variables

1

0

Σ_{col}

Jim

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	Р	Ν	Ν	Ν
Mary	F	Y	N	Р	Ν	Р	Ν
Jim	M	Y	P	N	N	Ν	N

- Gender is a symmetric attribute (not counted in)
- **The remaining attributes are asymmetric binary**
- □ Let the values Y and P be 1, and the value N be 0

Distance:
$$d(i, j) = \frac{r+s}{q+r+s}$$

 $d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$
 $d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$
 $d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$

Proximity Measure for Categorical Attributes

Categorical data, also called nominal attributes

- Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - □ *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - **Q** Replace *an ordinal variable value* by its rank: $r_{if} \in \{1, ..., M_f\}$
 - □ Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} 1}{M_f 1}$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - □ Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i, j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- □ If *f* is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- □ If *f* is ordinal
 - Compute ranks z_{if} (where z_{if} = $\frac{r_{if} 1}{M_f 1}$)
 Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

A document can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	base ball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where • indicates vector dot product, ||d||: the norm of vector d

Example: Calculating Cosine Similarity

Calculating Cosine Similarity:
$$d_1 \bullet d_2$$

 $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2}$

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Ex: Find the **similarity** between documents 1 and 2.

 $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

- □ First, calculate vector dot product
- Then, calculate $||d_1||$ and $||d_2||$

Example: Calculating Cosine Similarity

Calculating Cosine Similarity:
$$d_1 \bullet d_2$$

 $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2}$

$$sim(A,B) = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Ex: Find the **similarity** between documents 1 and 2.

 $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

□ First, calculate vector dot product

 $d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$

□ Then, calculate $||d_1||$ and $||d_2||$

 $||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$

 $||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1 = 4.12$

Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- □ Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research

References

- □ W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- □ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009