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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

q Basic Concepts

q Efficient Pattern Mining Methods

q Pattern Evaluation 

q Summary
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Pattern Discovery: Basic Concepts 

q What Is Pattern Discovery?   Why Is It Important?

q Basic Concepts: Frequent Patterns and Association Rules

q Compressed Representation: Closed Patterns and Max-Patterns
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What Is Pattern Discovery?
q What are patterns?
q Patterns: A set of items, subsequences, or substructures that occur 

frequently together (or strongly correlated) in a data set
q Patterns represent intrinsic and important properties of datasets

q Pattern discovery: Uncovering patterns from massive data sets
q Motivation examples:
q What products were often purchased together?
q What are the subsequent purchases after buying an iPad?
q What code segments likely contain copy-and-paste bugs?
q What word sequences likely form phrases in this corpus?
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Pattern Discovery: Why Is It Important?
q Finding inherent regularities in a data set 
q Foundation for many essential data mining tasks
q Association, correlation, and causality analysis
q Mining sequential, structural (e.g., sub-graph) patterns
q Pattern analysis in spatiotemporal, multimedia, time-series, and 

stream data 
q Classification: Discriminative pattern-based analysis
q Cluster analysis: Pattern-based subspace clustering

q Broad applications
q Market basket analysis, cross-marketing, catalog design, sale 

campaign analysis, Web log analysis, biological sequence 
analysis



7

Basic Concepts: k-Itemsets and Their Supports
q Itemset: A set of one or more items
q k-itemset:  X = {x1, …, xk}
q Ex. {Beer, Nuts, Diaper} is a 3-itemset

q (absolute) support (count) of X, sup{X}: 
Frequency or the number of 
occurrences of an itemset X

q Ex.  sup{Beer} = 3
q Ex.  sup{Diaper} = 4
q Ex.  sup{Beer, Diaper} = 3
q Ex.  sup{Beer, Eggs} = 1

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q (relative) support, s{X}:  The fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains X)

q Ex.  s{Beer} = 3/5 = 60%
q Ex.  s{Diaper} = 4/5 = 80%
q Ex.  s{Beer, Eggs} = 1/5 = 20%
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Basic Concepts: Frequent Itemsets (Patterns)
q An itemset (or a pattern) X is frequent

if the support of X is no less than a 
minsup threshold σ

q Let σ = 50%  (σ: minsup threshold)
For the given 5-transaction dataset
q All the frequent 1-itemsets:  
q Beer: 3/5 (60%); Nuts: 3/5 (60%)
q Diaper: 4/5 (80%); Eggs: 3/5 (60%)

q All the frequent 2-itemsets:  
q {Beer, Diaper}: 3/5 (60%)

q All the frequent 3-itemsets?
q None 

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Why do these itemsets (shown on the 
left) form the complete set of frequent 
k-itemsets (patterns) for any k?

q Observation:  We may need an 
efficient method to mine a complete 
set of frequent patterns
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From Frequent Itemsets to Association Rules
q Comparing with itemsets, rules can be more telling
q Ex.  Diaper à Beer  
q Buying diapers may likely lead to buying beers  

q How strong is this rule?  (support, confidence)
q Measuring association rules:  X à Y (s, c)
q Both X and Y are itemsets

q Support, s: The probability that a transaction 
contains X È Y

q Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
q Confidence, c: The conditional probability that a 

transaction containing X also contains Y
q Calculation: c = sup(X È Y) / sup(X)
q Ex. c = sup{Diaper, Beer}/sup{Diaper} = ¾ = 0.75

Note: X È Y: the union of two itemsets
n The set contains both X and Y

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Containing 
diaper

Containing 
both

Containing beer

Beer Diaper{Beer} È
{Diaper}

{Beer} È {Diaper} = {Beer, Diaper} 
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Mining Frequent Itemsets and Association Rules

q Association rule mining
q Given two thresholds: minsup, minconf
q Find all of the rules, X à Y (s, c)
q such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milkq Let minsup = 50% 
q Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
q Freq. 2-itemsets:  {Beer, Diaper}: 3

q Let minconf = 50%
q Beer à Diaper  (60%, 100%)
q Diaper à Beer  (60%, 75%)

q Observations: 
q Mining association rules and 

mining frequent patterns are 
very close problems

q Scalable methods are needed 
for mining large datasets
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Challenge: There Are Too Many Frequent Patterns!
q A long pattern contains a combinatorial number of sub-patterns
q How many frequent itemsets does the following TDB1 contain?
q TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
q Assuming (absolute) minsup = 1
q Let’s have a try

1-itemsets:  {a1}: 2, {a2}: 2, …, {a50}: 2, {a51}: 1, …, {a100}: 1, 
2-itemsets: {a1, a2}: 2, …, {a1, a50}: 2, {a1, a51}: 1 …, …, {a99, a100}: 1, 
…, …, …, …
99-itemsets: {a1, a2, …, a99}: 1, …, {a2, a3, …, a100}: 1
100-itemset: {a1, a2, …, a100}: 1

q The total number of frequent itemsets:

A too huge set for any 
one to compute or store!



12

Expressing Patterns in Compressed Form: Closed Patterns

q How to handle such a challenge?

q Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is 
frequent, and there exists no super-pattern Y כ X, with the same 
support as X 

q Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

q Suppose minsup = 1. How many closed patterns does TDB1
contain? 

q Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

q Closed pattern is a lossless compression of frequent patterns

q Reduces the # of patterns but does not lose the support 
information!

q You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”
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Expressing Patterns in Compressed Form: Max-Patterns

q Solution 2: Max-patterns:  A pattern X is a max-pattern if X is 
frequent and there exists no frequent super-pattern Y כ X 

q Difference from close-patterns?

q Do not care the real support of the sub-patterns of a max-pattern
q Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

q Suppose minsup = 1. How many max-patterns does TDB1 contain? 

q One:  P: “{a1, …, a100}: 1” 

q Max-pattern is a lossy compression! 
q We only know {a1, …, a40} is frequent
q But we do not know the real support of {a1, …, a40}, …, any more!

q Thus in many applications, mining close-patterns is more desirable 
than mining max-patterns
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Computational Complexity of Frequent Itemset Mining

q How many itemsets are potentially to be generated in the worst case?

q The number of frequent itemsets to be generated is senstive to the minsup threshold

q When minsup is low, there exist potentially an exponential number of frequent 
itemsets

q The worst case: MN where M: # distinct items, and N: max length of transactions

q The worst case complexty vs. the expected probability

q Ex. Suppose Walmart has 104 kinds of products 

q The chance to pick up one product 10-4

q The chance to pick up a particular set of 10 products: ~10-40

q What is the chance this particular set of 10 products to be frequent 103 times in 109

transactions?
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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

q Basic Concepts

q Efficient Pattern Mining Methods

q Pattern Evaluation 

q Summary
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Efficient Pattern Mining Methods

q The Downward Closure Property of Frequent Patterns

q The Apriori Algorithm

q Extensions or Improvements of Apriori

q Mining Frequent Patterns by Exploring Vertical Data Format

q FPGrowth:  A Frequent Pattern-Growth Approach

q Mining Closed Patterns 
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The Downward Closure Property of Frequent Patterns

q Observation:  From TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
q We get a frequent itemset:  {a1, …, a50}
q Also, its subsets are all frequent: {a1}, {a2}, …, {a50}, {a1, a2}, …, {a1, …, a49}, …
q There must be some hidden relationships among frequent patterns! 

q The downward closure (also called “Apriori”) property of frequent patterns
q If {beer, diaper, nuts} is frequent, so is {beer, diaper}
q Every transaction containing {beer, diaper, nuts} also contains {beer, diaper} 
q Apriori:  Any subset of a frequent itemset must be frequent

q Efficient mining methodology
q If any subset of an itemset S is infrequent, then there is no chance for S to 

be frequent—why do we even have to consider S!?   A sharp knife for pruning!
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Apriori Pruning and Scalable Mining Methods

q Apriori pruning principle: If there is any itemset which is 
infrequent, its superset should not even be generated! (Agrawal & 
Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

q Scalable mining Methods:  Three major approaches
q Level-wise, join-based approach:  Apriori (Agrawal & 

Srikant@VLDB’94)
q Vertical data format approach: Eclat (Zaki, Parthasarathy, 

Ogihara, Li @KDD’97)
q Frequent pattern projection and growth: FPgrowth (Han, Pei, 

Yin @SIGMOD’00)
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Apriori: A Candidate Generation & Test Approach

q Outline of Apriori (level-wise, candidate generation and test) 

q Initially, scan DB once to get frequent 1-itemset

q Repeat

q Generate length-(k+1) candidate itemsets from length-k frequent 
itemsets

q Test the candidates against DB to find frequent (k+1)-itemsets

q Set k := k +1

q Until no frequent or candidate set can be generated

q Return all the frequent itemsets derived
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The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k
Fk : Frequent itemset of size k

K := 1;
Fk := {frequent items};   // frequent 1-itemset
While (Fk != Æ) do { // when Fk is non-empty

Ck+1 := candidates generated from Fk;  // candidate generation
Derive Fk+1 by counting candidates in Ck+1 with respect to TDB at minsup;
k := k + 1
}

return Èk Fk // return Fk generated at each level
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1
F1

F2
C2 C2

2nd scan

C3 F33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

minsup = 2
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abc abd acd ace bcd

abcd acde

self-join self-join

pruned

Apriori: Implementation Tricks
q How to generate candidates?
q Step 1: self-joining Fk

q Step 2: pruning

q Example of candidate-generation
q F3 = {abc, abd, acd, ace, bcd}

q Self-joining: F3*F3

q abcd from abc and abd
q acde from acd and ace

q Pruning:

q acde is removed because ade is not in F3

q C4 = {abcd}
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Candidate Generation: An SQL Implementation

q Suppose the items in Fk-1 are listed 
in an order

q Step 1: self-joining Fk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Fk-1 as p, Fk-1 as q
where p.item1= q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1

q Step 2: pruning
for all itemsets c in Ck do
for all (k-1)-subsets s of c do

if (s is not in Fk-1) then delete c from Ck

abc abd acd ace bcd

abcd acde

self-join self-join

pruned
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Apriori: Improvements and Alternatives

q Reduce passes of transaction database scans
q Partitioning (e.g., Savasere, et al., 1995)
q Dynamic itemset counting (Brin, et al., 1997)

q Shrink the number of candidates
q Hashing (e.g., DHP: Park, et al., 1995)
q Pruning by support lower bounding (e.g., Bayardo 1998)
q Sampling (e.g., Toivonen, 1996)

q Exploring special data structures
q Tree projection (Agarwal, et al., 2001)
q H-miner (Pei, et al., 2001)
q Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

To be discussed in 
subsequent slides

To be discussed in 
subsequent slides
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Partitioning: Scan Database Only Twice

q Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least 
one of the partitions of TDB   

TDB1 TDB2 TDBk+ =       TDB++
sup1(X) < σ|TDB1| sup2(X) < σ|TDB2| supk(X) < σ|TDBk| sup(X) < σ|TDB|

Here is the proof!

. . .
. . .

q Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB’95)
q Scan 1: Partition database so that each partition can fit in main memory (why?)
q Mine local frequent patterns in this partition

q Scan 2: Consolidate global frequent patterns
q Find global frequent itemset candidates (those frequent in at least one partition)
q Find the true frequency of those candidates, by scanning TDBi one more time
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Direct Hashing and Pruning (DHP)

q DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD’95)
q Hashing: Different itemsets may have the same hash value:  v = hash(itemset)
q 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
q Observation:   A k-itemset cannot be frequent if its corresponding hashing bucket 

count is below the minsup threshold
q Example: At the 1st scan of TDB, count 1-itemset, and
q Hash 2-itemsets in the transaction to its bucket

q {ab, ad, ce}
q {bd, be, de} 
q …

q At the end of the first scan,
q if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Hash Table

Itemsets Count

{ab, ad, ce} 35

{bd, be, de} 298

…… …
{yz, qs, wt} 58
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Why Mining Frequent Patterns by Pattern Growth?

q Apriori:  A breadth-first search mining algorithm

q First find the complete set of frequent k-itemsets

q Then derive frequent (k+1)-itemset candidates

q Scan DB again to find true frequent (k+1)-itemsets

q Motivation for a different mining methodology

q Can we develop a depth-first search mining algorithm?

q For a frequent itemset ρ, can subsequent search be confined 
to only those transactions that containing ρ?

q Such thinking leads to a frequent pattern growth approach: 

q FPGrowth (J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns 
without Candidate Generation,” SIGMOD 2000)
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FPGrowth: Mining Frequent Patterns by Pattern Growth

q Essence of frequent pattern growth (FPGrowth) methodology

q Find frequent single items and partition the database based on each 
such single item pattern 

q Recursively grow frequent patterns by doing the above for each 
partitioned database (also called the pattern’s conditional database) 

q To facilitate efficient processing, an efficient data structure, FP-tree, can 
be constructed

q Mining becomes 

q Recursively construct and mine (conditional) FP-trees 

q Until the resulting FP-tree is empty, or until it contains only one path—
single path will generate all the combinations of its sub-paths, each of 
which is a frequent pattern
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

{}

f:1

c:1

a:1

m:1

p:1

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 1st frequent 
Itemlist: “f, c, a, m, p”
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 2nd frequent 
itemlist “f, c, a, b, m”

{} 

f:2

c:2

a:2

b:1m:1

p:1 m:1
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting all the 
frequent itemlists

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1
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Mining FP-Tree: Divide and Conquer 
Based on Patterns and Data

q Frequent patterns can be partitioned into subsets according to f-list
q Patterns containing p: p’s conditional database: fcam:2, cb:1
q p’s conditional database (i.e., the database under the condition that p exists): 
q transformed prefix paths of item p

q Patterns having m but no p: m’s conditional database: fca:2, fcab:1
q …… ……

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Item Conditional database

c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional database of each patternmin_support = 3
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f:3

Mine Each Conditional Database Recursively
q For each conditional database
q Mine single-item patterns
q Construct its FP-tree & mine it

{}

f:3

c:3

a:3

item cond. data base

c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional Data Bases

p’s conditional DB: fcam:2, cb:1 → c: 3
m’s conditional DB: fca:2, fcab:1 → fca: 3

b’s conditional DB: fca:1, f:1, c:1 → ɸ

{}

f:3

c:3

am’s FP-tree

m’s FP-tree

{}

f:3

cm’s FP-tree

{}

cam’s FP-tree
m: 3
fm: 3, cm: 3, am: 3 
fcm: 3, fam:3, cam: 3 
fcam: 3

Actually, for single branch FP-tree, all the 
frequent patterns can be generated in one shot

min_support = 3

Then, mining m’s FP-tree: fca:3
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A Special Case: Single Prefix Path in FP-tree

q Suppose a (conditional) FP-tree T has a shared single prefix-path P

q Mining can be decomposed into two parts

q Reduction of the single prefix path into one node

q Concatenation of the mining results of the two parts

Ú

a2:n2

a3:n3

a1:n1

{}

b1:m1 c1:k1

c2:k2 c3:k3

b1:m1 c1:k1

c2:k2 c3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =
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Assume only f’s are 
frequent & the 
frequent item 
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection
q What if FP-tree cannot fit in memory?—Do not construct FP-tree
q “Project” the database based on frequent single items
q Construct & mine FP-tree for each projected DB

q Parallel projection vs. partition projection 
q Parallel projection: Project the DB on each frequent item
q Space costly, all partitions can be processed in parallel

q Partition projection: Partition the DB in order
q Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h
f3 f4 i j 
f2 f4 k 
f1 f3 h
…

Trans. DB Parallel projection

f2 f3
f3
f2
…

f4-proj. DB f3-proj. DB f4-proj. DB

f2
f1
…

Partition projection

f2 f3
f3
f2
…

f1
…

f3-proj. DB

f2 will be projected to f3-proj. 
DB only when processing f4-
proj. DB 
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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

q Basic Concepts

q Efficient Pattern Mining Methods

q Pattern Evaluation 

q Summary
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Pattern Evaluation

q Limitation of the Support-Confidence Framework

q Interestingness Measures: Lift and χ2

q Null-Invariant Measures

q Comparison of Interestingness Measures
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How to Judge if a Rule/Pattern Is Interesting?

q Pattern-mining will generate a large set of patterns/rules

q Not all the generated patterns/rules are interesting

q Interestingness measures: Objective vs. subjective

q Objective interestingness measures

q Support, confidence, correlation, …
q Subjective interestingness measures: 

q Different users may judge interestingness differently

q Let a user specify
q Query-based:  Relevant to a user’s particular request

q Judge against one’s knowledge-base
q unexpected, freshness, timeliness



41

Limitation of the Support-Confidence Framework

q Are s and c interesting in association rules: “A Þ B” [s, c]? 
q Example:  Suppose one school may have the following statistics on # 

of students who may play basketball and/or eat cereal:

q Association rule mining may generate the following:
q play-basketball Þ eat-cereal [40%, 66.7%]  (higher s & c)

q But this strong association rule is misleading: The overall % of 
students eating cereal is 75% > 66.7%, a more telling rule:

q ¬ play-basketball Þ eat-cereal [35%, 87.5%] (high s & c)

play-basketball not play-basketball sum (row)
eat-cereal 400 350 750
not eat-cereal 200 50 250

sum(col.) 600 400 1000

2-way contingency table

Be careful!



42

Interestingness Measure: Lift

q Measure of dependent/correlated events: lift

33.1
1000/2501000/600

1000/200),( =
´

=¬CBlift

89.0
1000/7501000/600

1000/400),( =
´

=CBlift

)()(
)(

)(
)(),(

CsBs
CBs

Cs
CBcCBlift

´
È

=
®

= B ¬B ∑row
C 400 350 750

¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

q Lift(B, C) may tell how B and C are correlated
q Lift(B, C) = 1: B and C are independent
q > 1:  positively correlated
q < 1: negatively correlated

q For our example,

q Thus, B and C are negatively correlated since lift(B, C) < 1; 
q B and ¬C are positively correlated since lift(B, ¬C) > 1
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Interestingness Measure: χ2

q Another measure to test correlated events: χ2 B ¬B ∑row
C 400 (450) 350 (300) 750

¬C 200 (150) 50 (100) 250
∑col 600 400 1000

å -
=

Expected
ExpectedObserved 2

2 )(c

q For the table on the right,

q By consulting a table of critical values of the χ2 distribution, one can 
conclude that the chance for B and C  to be independent is very low 
(< 0.01)

q χ2-test shows B and C are negatively correlated since the expected 
value is 450 but the observed is only 400

q Thus, χ2 is also more telling than the support-confidence framework

Expected value

Observed value

χ 2 =
(400− 450)2

450
+
(350−300)2

300
+
(200−150)2

150
+
(50−100)2

100
= 55.56
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Lift and χ2 : Are They Always Good Measures?

q Null transactions:  Transactions that contain 

neither B nor C

q Let’s examine the new dataset D

q BC (100) is much rarer than B¬C (1000) and ¬BC 

(1000), but there are many ¬B¬C (100000)

q Unlikely B & C will happen together!

q But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are 
strongly positively correlated!)

q χ2 = 670: Observed(BC) >> expected value (11.85)

q Too many null transactions may “spoil the soup”!

B ¬B ∑row
C 100 1000 1100

¬C 1000 100000 101000
∑col. 1100 101000 102100

B ¬B ∑row
C 100 (11.85) 1000 1100

¬C 1000 (988.15) 100000 101000
∑col. 1100 101000 102100

null transactions

Contingency table with expected values added
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Null Invariance: An Important Property
q Why is null invariance crucial for the analysis of massive transaction data? 
q Many transactions may contain neither milk nor coffee!

q Lift and c2 are not null-invariant: not good to 
evaluate data that contain too many or too 
few null transactions!

q Many measures are not null-invariant! 
Null-transactions 

w.r.t. m and c

milk vs. coffee contingency table
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Interestingness Measures & Null-Invariance

q Null invariance: Value does not change with the # of null-transactions
q A few interestingness measures:  Some are null invariant

Χ2 and lift are not 
null-invariant

Jaccard, consine, 
AllConf, MaxConf, 

and Kulczynski
are null-invariant 

measures
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Comparison of Null-Invariant Measures
q Not all null-invariant measures are created equal
q Which one is better?
q D4—D6 differentiate the null-invariant measures
q Kulc (Kulczynski 1927) holds firm and is in balance of 

both directional implications

All 5 are null-invariant

Subtle: They disagree on those cases

2-variable contingency table
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Analysis of DBLP Coauthor Relationships

q Which pairs of authors are strongly related?
q Use Kulc to find Advisor-advisee, close collaborators

q DBLP: Computer science research publication bibliographic database
q > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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Imbalance Ratio with Kulczynski Measure

q IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in 
rule implications:

q Kulczynski and Imbalance Ratio (IR) together present a clear picture for all 
the three datasets D4 through D6

q D4  is neutral & balanced;  D5  is neutral but imbalanced 
q D6  is neutral but very imbalanced 
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What Measures to Choose for Effective Pattern Evaluation?

q Null value cases are predominant in many large datasets 
q Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author 

in most of the papers; ……
q Null-invariance is an important property
q Lift, χ2 and cosine are good measures if null transactions are not predominant
q Otherwise, Kulczynski + Imbalance Ratio should be used to judge the 

interestingness of a pattern 
q Exercise: Mining research collaborations from research bibliographic data 
q Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
q Can you find the likely advisor-advisee relationship and during which years such a 

relationship happened?
q Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-

Advisee Relationships from Research Publication Networks",  KDD'10
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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

q Basic Concepts

q Efficient Pattern Mining Methods

q Pattern Evaluation 

q Summary
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Summary
q Basic Concepts

q What Is Pattern Discovery?   Why Is It Important?
q Basic Concepts: Frequent Patterns and Association Rules
q Compressed Representation: Closed Patterns and Max-Patterns

q Efficient Pattern Mining Methods
q The Downward Closure Property of Frequent Patterns
q The Apriori Algorithm
q Extensions or Improvements of Apriori
q Mining Frequent Patterns by Exploring Vertical Data Format
q FPGrowth:  A Frequent Pattern-Growth Approach
q Mining Closed Patterns 

q Pattern Evaluation
q Interestingness Measures in Pattern Mining 
q Interestingness Measures: Lift and χ2

q Null-Invariant Measures
q Comparison of Interestingness Measures
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Recommended Readings (Basic Concepts)

q R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of 
items in large databases”,  in Proc. of SIGMOD'93

q R. J. Bayardo, “Efficiently mining long patterns from databases”, in Proc. of 
SIGMOD'98

q N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets
for association rules”, in Proc. of ICDT'99

q J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent Pattern Mining: Current Status and 
Future Directions”, Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
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Recommended Readings (Efficient Pattern Mining Methods)

q R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, VLDB'94
q A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algorithm for mining association rules in large 

databases”, VLDB'95
q J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash-based algorithm for mining association rules”, 

SIGMOD'95
q S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating association rule mining with relational database 

systems: Alternatives and implications”, SIGMOD'98
q M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithm for discovery of association 

rules”, Data Mining and Knowledge Discovery, 1997
q J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation”, SIGMOD’00
q M. J. Zaki and Hsiao, “CHARM: An Efficient Algorithm for Closed Itemset Mining”, SDM'02
q J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best Strategies for Mining Frequent Closed 

Itemsets”, KDD'03
q C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, “Frequent Pattern Mining Algorithms: A Survey”, in 

Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014 
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Recommended Readings (Pattern Evaluation)

q C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS’98

q S. Brin, R. Motwani, and C. Silverstein.   Beyond market basket: Generalizing 
association rules to correlations.  SIGMOD'97

q M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.   Finding 
interesting rules from large sets of discovered association rules.  CIKM'94

q E. Omiecinski.   Alternative Interest Measures for Mining Associations.  TKDE’03

q P.-N. Tan, V. Kumar, and J. Srivastava.   Selecting the Right Interestingness Measure for 
Association Patterns.  KDD'02

q T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern 
Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 
2010
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