

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Jiawel Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

Pattern Discovery: Basic Concepts

What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

What Is Pattern Discovery?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
- - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
 - \Box Ex. sup{Beer} = 3
 - \Box Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- □ (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \Box Ex. s{Beer} = 3/5 = 60%
 - \Box Ex. s{Diaper} = 4/5 = 80%
 - \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : *minsup* threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets

- Support, s: The probability that a transaction contains X ∪ Y
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Mining Frequent Itemsets and Association Rules

Association rule mining

- Given two thresholds: minsup, minconf
- \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - \square such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- Let minconf = 50%
 - \Box Beer \rightarrow Diaper (60%, 100%)
 - \Box Diaper \rightarrow Beer (60%, 75%)

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

A too huge set for any

one to compute or store!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?
 - TDB₁. T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: \{a_1\}: 2, \{a_2\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1,
2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1 ..., ..., \{a_{99}, a_{100}\}: 1,
```

99-itemsets: $\{a_1, a_2, ..., a_{99}\}$: 1, ..., $\{a_2, a_3, ..., a_{100}\}$: 1

100-itemset: $\{a_1, a_2, ..., a_{100}\}$: 1

The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent,* and there exists *no super-pattern* Y ⊃ X, *with the same* support as X
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{100}\}$: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - \square We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - □ The number of frequent itemsets to be generated is senstive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - ☐ The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10⁻⁴⁰
 - □ What is the chance this particular set of 10 products to be frequent 10³ times in 10⁵ transactions?

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods

- Pattern Evaluation
- Summary

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- □ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- □ Observation: From $TDB_{1:} T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - \square Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ...
 - There must be some hidden relationships among frequent patterns!
- □ The downward closure (also called "Apriori") property of frequent patterns
 - ☐ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k \mid = \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm—An Example

Database TDB

Tid

10

20

30

40

 F_2

minsup = 2

 C_1

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 F_1 $\{A\}$ $\{A\}$ $\{B\}$ $\{C\}$ $\{E\}$ $\{E\}$ $\{C\}$ $\{C\}$

Items

A, C, D

B, C, E

A, B, C, E

B, E

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

 $3^{\text{rd}} \text{ scan} \qquad F_3$

Itemset	sup
{B, C, E}	2

Apriori: Implementation Tricks

- How to generate candidates?
 - \square Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - \Box F_3 = {abc, abd, acd, ace, bcd}
 - \square Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \square acde is removed because ade is not in F_3

Candidate Generation: An SQL Implementation

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

- Suppose the items in F_{k-1} are listed in an order
- Step 1: self-joining F_{k-1} insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from F_{k-1} as p, F_{k-1} as q
- Step 2: pruning for all *itemsets c in C_k* do for all *(k-1)-subsets s of c* do **if** *(s is not in F_{k-1})* **then delete** *c* **from** C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - Partitioning (e.g., Savasere, et al., 1995)

- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)

- Pruning by support lower bounding (e.g., Bayardo 1998)
- Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - Tree projection (Agarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database so that each partition can fit in main memory (why?)
 - Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - □ Find global frequent itemset candidates (those frequent in at least one partition)
 - ☐ Find the true frequency of those candidates, by scanning TDB; one more time

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- \square Hashing: Different itemsets may have the same hash value: v = hash(itemset)
- □ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
- □ Observation: A *k*-itemset cannot be frequent if its corresponding hashing bucket

count is below the *minsup* threshold

■ Example: At the 1st scan of TDB, count 1-itemset, and

■ Hash 2-itemsets in the transaction to its bucket

- → {ab, ad, ce}
- □ {bd, be, de}

Itemsets	Count
{ab, ad, ce}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

- At the end of the first scan,
 - ☐ if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Why Mining Frequent Patterns by Pattern Growth?

- □ Apriori: A *breadth-first search* mining algorithm
 - ☐ First find the complete set of frequent k-itemsets
 - Then derive frequent (k+1)-itemset candidates
 - □ Scan DB again to find true frequent (k+1)-itemsets
- Motivation for a different mining methodology
 - Can we develop a depth-first search mining algorithm?
 - For a frequent itemset ρ, can subsequent search be confined to only those transactions that containing ρ?
- Such thinking leads to a frequent pattern growth approach:
 - FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Essence of frequent pattern growth (FPGrowth) methodology
 - ☐ Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting the 1st frequent Itemlist: "f, c, a, m, p"

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Item	Frequency	header	-> f:1
f	4		c:1
С	4		
a	3		> a:1
b	3		m:1
m	3		
р	3		> p:1

Header Table

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting the 2nd frequent itemlist "f, c, a, b, m"

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- 2. Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Item	Frequency	header $f:2$
f	4	c:2
С	4	
а	3	> a:2
b	3	
m	3	
р	3	$ p:1 \rightarrow m:1$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting all the frequent itemlists

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- ☐ Frequent patterns can be partitioned into subsets according to f-list
 - Patterns containing p: p's conditional database: fcam:2, cb:1
 - \square p's conditional database (i.e., the database under the condition that p exists):
 - □ transformed prefix paths of item p
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1

Conditional database of each pattern

<u>Item</u>	<u>Conditional database</u>
С	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Database Recursively

min_support = 3

Conditional Data Bases

item cond. data base

- *c f:3*
- a fc:3
- b fca:1, f:1, c:1
- m fca:2, fcab:1
- p fcam:2, cb:1

- For each conditional database
 - Mine single-item patterns
 - Construct its FP-tree & mine it

```
p's conditional DB: fcam:2, cb:1 \rightarrow c:3
```

m's conditional DB: fca:2, $fcab:1 \rightarrow fca:3$

b's conditional DB: $fca:1, f:1, c:1 \rightarrow \phi$

Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

f:3

f:3

f:3

c:3

c:3

cm's FP-tree

am's FP-tree

Then, mining m's FP-tree: fca:3

fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

fcam: 3

m: 3

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two parts

Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods
- Pattern Evaluation

Summary

Pattern Evaluation

- ☐ Limitation of the Support-Confidence Framework
- \square Interestingness Measures: Lift and χ^2

Null-Invariant Measures

Comparison of Interestingness Measures

How to Judge if a Rule/Pattern Is Interesting?

- □ Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- ☐ Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - □ Support, confidence, correlation, ...
 - Subjective interestingness measures:
 - Different users may judge interestingness differently
 - Let a user specify
 - Query-based: Relevant to a user's particular request
 - ☐ Judge against one's knowledge-base
 - unexpected, freshness, timeliness

Limitation of the Support-Confidence Framework

- \square Are s and c interesting in association rules: "A \Rightarrow B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750 2-	Way Conti
not eat-cereal	200	50	250	way contingency table
sum(col.)	600	400	1000	1016

- Association rule mining may generate the following:
 - \square play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - □ > 1: positively correlated
 - □ < 1: negatively correlated</p>

For our example,
$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$
$$lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

- ☐ Thus, B and C are negatively correlated since lift(B, C) < 1;
 - B and \neg C are positively correlated since lift(B, \neg C) > 1

Lift is more telling than s & c

	В	¬B	Σ_{row}
С	400	350	750
ΓC	200	50	250
$\Sigma_{col.}$	600	400	1000

Interestingness Measure: χ^2

 \square Another measure to test correlated events: χ^2

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

For the table on the right,

	В		¬B	Σ_{row}	
С	400 (450)		350 (300)	750	
¬C	20	ر (150)	50 (100)	250	
Σ_{col}		600	400	1000	

χ^2 –	$(400-450)^2$	$-\frac{(350-300)^2}{}$	$(200-150)^2$	$(50-100)^2$
χ –	450	300	150	100

Expected value

Observed value

- By consulting a table of critical values of the χ^2 distribution, one can conclude that the chance for B and C to be independent is very low (< 0.01)
- χ²-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- \Box Thus, χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

■ Null transactions: Transactions that contain neither B nor C

- Let's examine the new dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- \square χ^2 = 670: Observed(BC) >> expected value (11.85)
- □ Too many null transactions may "spoil the soup"!

	В	¬B	Σ_{row}
С	100	1000	1100
¬C	1000	100000	101000
$\Sigma_{\text{col.}}$	1100 /	101000	102100

null transactions

Contingency table with expected values added

	В	¬В	\sum_{row}
С	100 (11.85)	1000	1100
¬C	1000 (988.15)	100000	101000
$\Sigma_{\text{col.}}$	1100	101000	102100

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Interestingness Measures & Null-Invariance

- □ *Null invariance:* Value does not change with the # of null-transactions
- ☐ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant?
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j)-o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0, \infty]$	No
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0, \infty]$	No
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A, B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes
$\mathit{MaxConf}(A,B)$	$max\{\frac{s(A \cup B)}{s(A)}, \frac{s(A \cup B)}{s(B)}\}$	[0, 1]	Yes

X² and lift are not null-invariant

Jaccard, consine,
AllConf, MaxConf,
and Kulczynski
are null-invariant
measures

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - \square D₄—D₆ differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

All 5 are null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Analysis of DBLP Coauthor Relationships

- □ DBLP: Computer science research publication bibliographic database
 - > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	4 8	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133 (5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	\triangleleft 2	120	12	0.100(10)	0.316 (6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Imbalance Ratio with Kulczynski Measure

□ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: |s(A) - s(B)|

$$IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$$

- □ Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - \square D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	$\bigcirc 0.5$	0
D_5	1,000	100	10,000	100,000	0.09	0.29	$\bigcirc 0.5$	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	$\bigcirc 0.5$	0.99

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- □ *Null-invariance* is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - ☐ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - □ Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Chapter 6: Mining Frequent Patterns, Association and **Correlations: Basic Concepts and Methods**

- **Basic Concepts**
- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

Summary

- Basic Concepts
 - What Is Pattern Discovery? Why Is It Important?
 - Basic Concepts: Frequent Patterns and Association Rules
 - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
 - The Downward Closure Property of Frequent Patterns
 - ☐ The Apriori Algorithm
 - Extensions or Improvements of Apriori
 - Mining Frequent Patterns by Exploring Vertical Data Format
 - ☐ FPGrowth: A Frequent Pattern-Growth Approach
 - Mining Closed Patterns
- Pattern Evaluation
 - Interestingness Measures in Pattern Mining
 - □ Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- □ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010

