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Supervised vs. Unsupervised Learning (1)
q Supervised learning (classification)

q Supervision: The training data such as observations or measurements are 
accompanied by labels indicating the classes which they belong to

q New data is classified based on the models built from the training set

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Training Data with class label:
Model 

Learning

Positive

Negative

Training 
Instances

Test 
Instances

Prediction 
Model 
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Supervised vs. Unsupervised Learning (2)

q Unsupervised learning (clustering)

q The class labels of training data are unknown

q Given a set of observations or measurements, establish the possible existence 
of classes or clusters in the data
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q Classification

q Predict categorical class labels (discrete or nominal)

q Construct a model based on the training set and the class labels (the values in a 
classifying attribute) and use it in classifying new data

q Numeric prediction  

q Model continuous-valued functions (i.e., predict unknown or missing values)

q Typical applications of classification

q Credit/loan approval

q Medical diagnosis: if a tumor is cancerous or benign

q Fraud detection: if a transaction is fraudulent

q Web page categorization: which category it is

Prediction Problems: Classification vs. Numeric 
Prediction
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Classification—Model Construction, Validation and Testing
q Model construction
q Each sample is assumed to belong to a predefined class (shown by the class label)
q The set of samples used for model construction is training set
q Model: Represented as decision trees, rules, mathematical formulas, or other forms

q Model Validation and Testing: 
q Test: Estimate accuracy of the model
q The known label of test sample is compared with the classified result from the 

model
q Accuracy: % of test set samples that are correctly classified by the model
q Test set is independent of training set 

q Validation: If the test set is used to select or refine models, it is called validation (or 
development) (test) set

q Model Deployment: If the accuracy is acceptable, use the model to classify new data
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Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

Not-buy Buy Buy

Buy

31..40

Not-buy

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q Decision tree construction: 
q A top-down, recursive, divide-and-

conquer process
q Resulting tree:

Note: The data set is adapted from 
“Playing Tennis” example of R. Quinlan

Training data set: Who buys computer?
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Decision Tree Induction: Algorithm

q Basic algorithm 
q Tree is constructed in a top-down, recursive, divide-and-conquer manner
q At start, all the training examples are at the root
q Examples are partitioned recursively based on selected attributes
q On each node, attributes are selected based on the training examples on that 

node, and a heuristic or statistical measure (e.g., information gain)
q Conditions for stopping partitioning
q All samples for a given node belong to the same class
q There are no remaining attributes for further partitioning 
q There are no samples left

q Prediction
q Majority voting is employed for classifying the leaf
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From Entropy to Info Gain: A Brief Review of Entropy

q Entropy (Information Theory)
q A measure of uncertainty associated with a random number
q Calculation:  For a discrete random variable Y taking m distinct values {y1, y2, …, ym}

q Interpretation
q Higher entropy → higher uncertainty
q Lower entropy → lower uncertainty

q Conditional entropy

m = 2
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Information Gain: An Attribute Selection Measure 

q Select the attribute with the highest information gain (used in typical 
decision tree induction algorithm: ID3/C4.5)

q Let pi be the probability that an arbitrary tuple in D belongs to class Ci, 
estimated by |Ci, D|/|D|

q Expected information (entropy) needed to classify a tuple in D:

q Information needed (after using A to split D into v partitions) to classify D:

q Information gained by branching on attribute A
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Example: Attribute Selection with Information Gain
q Class P: buys_computer = “yes”
q Class N: buys_computer = “no”

means “age <=30” has 5 out of 14 
samples, with 2 yes’es and 3 no’s. 
Hence

Similarly, we can get

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971
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age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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How to Handle Continuous-Valued Attributes?
q Method 1: Discretize continuous values and treat them as categorical values

q E.g., age: < 20, 20..30, 30..40, 40..50, > 50

q Method 2: Determine the best split point for continuous-valued attribute A

q Sort the value A in increasing order:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, …

q Possible split point: the midpoint between each pair of adjacent values  

q (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

q e.g., (15+18/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, …

q The point with the maximum information gain for A is selected as the split-
point for A

q Split:  Based on split point P

q The set of tuples in D satisfying A ≤ P vs. those with A > P
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Gain Ratio: A Refined Measure for Attribute Selection
q Information gain measure is biased towards attributes with a large number of 

values
q Gain ratio: Overcomes the problem (as a normalization to information gain)

q GainRatio(A) = Gain(A)/SplitInfo(A)
q The attribute with the maximum gain ratio is selected as the splitting attribute
q Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan

q Example
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Another Measure: Gini Index
q Gini index: Used in CART, and also in IBM IntelligentMiner
q If a data set 𝐷 contains examples from 𝑛 classes, gini index, 𝑔𝑖𝑛𝑖(𝐷) is defined as

q 𝑔𝑖𝑛𝑖 𝐷 = 1 − ∑+,(- 𝑝+)

q 𝑝+ is the relative frequency of class 𝑗 in 𝐷
q If a data set 𝐷 is split on 𝐴 into two subsets 𝐷1 and 𝐷2, the 𝑔𝑖𝑛𝑖 index 𝑔𝑖𝑛𝑖(𝐷) is 

defined as

q 𝑔𝑖𝑛𝑖. 𝐷 = /!
/
𝑔𝑖𝑛𝑖 𝐷( + /"

/
𝑔𝑖𝑛𝑖 𝐷)

q Reduction in Impurity:
q Δ𝑔𝑖𝑛𝑖 𝐴 = 𝑔𝑖𝑛𝑖 𝐷 − 𝑔𝑖𝑛𝑖.(𝐷)

q The attribute provides the smallest 𝑔𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝐷) (or the largest reduction in 
impurity) is chosen to split the node (need to enumerate all the possible splitting 
points for each attribute)
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Computation of Gini Index 
q Example:  D has 9 tuples in buys_computer = “yes” and 5 in “no”

q Suppose the attribute income partitions D into 10 in D1: {low, medium} and 4 in D2

q 𝑔𝑖𝑛𝑖0-1234∈ 627,3490:3 𝐷 = (;
('𝑔𝑖𝑛𝑖 𝐷( + '
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= 𝐺𝑖𝑛𝑖0-1234∈ <0=< 𝐷
q Gini{low,high} is 0.458; Gini{medium,high} is 0.450
q Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index
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q All attributes are assumed continuous-valued
q May need other tools, e.g., clustering, to get the possible split values
q Can be modified for categorical attributes
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Comparing Three Attribute Selection Measures

q The three measures, in general, return good results but
q Information gain: 

q biased towards multivalued attributes

q Gain ratio: 
q tends to prefer unbalanced splits in which one partition is much smaller than 

the others

q Gini index: 

q biased to multivalued attributes
q has difficulty when # of classes is large

q tends to favor tests that result in equal-sized partitions and purity in both 
partitions
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Other Attribute Selection Measures
q Minimal Description Length (MDL) principle

q Philosophy: The simplest solution is preferred 
q The best tree as the one that requires the fewest # of bits to both (1) encode 

the tree, and (2) encode the exceptions to the tree
q CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence
q Multivariate splits (partition based on multiple variable combinations)

q CART: finds multivariate splits based on a linear combination of attributes

q There are many other measures proposed in research and applications
q E.g., G-statistics, C-SEP

q Which attribute selection measure is the best?

q Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

q Overfiung:  An induced tree may overfit the training data 

q Too many branches, some may reflect anomalies due to noise or 
outliers

q Poor accuracy for unseen samples

q Two approaches to avoid overfiung 

q Prepruning: Halt tree construc<on early ̵ do not split a node if this 
would result in the goodness measure falling below a threshold

q Difficult to choose an appropriate threshold

q Postpruning: Remove branches from a “fully grown” tree—get a 
sequence of progressively pruned trees

q Use a set of data different from the training data to decide which is 
the “best pruned tree”
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Classification in Large Databases
q Classification—a classical problem extensively studied by statisticians and machine 

learning researchers

q Scalability: Classifying data sets with millions of examples and hundreds of 
attributes with reasonable speed

q Why is decision tree induction popular?

q Relatively fast learning speed 

q Convertible to simple and easy to understand classification rules

q Easy to be adapted to database system implementations (e.g., using SQL)

q Comparable classification accuracy with other methods

q RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

q Builds an AVC-list (attribute, value, class label)
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RainForest: A Scalable Classification Framework 
q The criteria that determine the quality of the tree can be computed separately 
q Builds an AVC-list: AVC (AHribute, Value, Class_label) 

q AVC-set  (of an a}ribute X )
q Projec�on of training dataset onto the a}ribute X and class label where counts 

of individual class label are aggregated

Its AVC Sets

Age Buy_Computer

yes no

<=30 2 3

31..40 4 0

>40 3 2

income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on Age AVC-set on Income

student Buy_Computer

yes no

yes 6 1

no 3 4

AVC-set on Student

Credit
rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

AVC-set on Credit_Ra3ng

q AVC-group  (of a 
node n )

q Set of AVC-
sets of all 
predictor 
attributes at 
the node n

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

The Training Data
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Visualization of a Decision Tree 
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Linear Regression vs. Linear Classifier

q Linear regression
q Data modeled to fit a straight line
q Linear equation: Y = w X + b

q Often uses the least-square method to fit the line
q Used to predict continuous values

q Linear Classifier
q Built a classification model using a straight line
q Used for (categorical data) binary classification x
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Linear Classifier: General Ideas

q Binary Classification

q 𝑓(𝑥) is a linear function based on the example’s attribute values

q The prediction is based on the value of 𝑓(𝑥)
q Data above the blue line belongs to class ‘x’ (i.e., 𝑓 𝑥 > 0)
q Data below blue line belongs to class ‘o’ (i.e., 𝑓 𝑥 < 0)

q Classical Linear Classifiers

q Linear Discriminant Analysis (LDA) (not covered)
q Logistic Regression
q Perceptron (later)
q SVM (later)
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Linear Classifier: An Example
q A toy rule to determine whether a faculty member has tenure
q Year >= 6 or Title = “Professor”  ó Tenure

q How to express the rule as a linear classifier?
q Features
q x((𝑥( ≥ 0) is an integer denoting the year
q x) is a Boolean denoting whether the title is “Professor”

q A feasible linear classifier: 𝑓 𝑥 = 𝑥( − 5 + 6 ⋅ 𝑥2
q When 𝑥) is True, because 𝑥( ≥ 0, 𝑓(𝑥) is always greater than 0
q When 𝑥) is False, because 𝑓 𝑥 > 0ó𝑥( ≥ 6

q There are many more feasible classifiers
q 𝑓 𝑥 = 𝑥( − 5.5 + 6 ⋅ 𝑥2
q 𝑓 𝑥 = 2 ⋅ 𝑥( − 5 + 11 ⋅ 𝑥2
q …...
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Key Question: Which Line Is Better?

q There might be many feasible linear 
functions

q Both H1 and H2 will work
q Which one is better?
q H2 looks “better” in the sense that it is 

also furthest from both groups
q We will introduce more in the SVM section
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Logistic Regression: General Ideas

q Key Idea: Turns linear predictions into probabilities
q Sigmoid function:

q 𝑆 𝑥 = (
(>4#$ =

4$

4$>(
q Projects (−∞,+∞) to [0, 1]

q Compare to linear probability model
q More smooth

Linear Probability 
Model

Logistic Regression 
Model
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Logistic Regression: An Example

q Suppose we only consider the year as feature

year
6

1 (Tenured)
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Logistic Regression: Maximum Likelihood

q The prediction function to learn
q 𝑝 𝑌 = 1 𝑋 = 𝑥;𝒘) = 𝑆 𝑤; + ∑0,(- 𝑤0 ⋅ 𝑥0
q 𝒘 = 𝑤;, 𝑤(, 𝑤), … , 𝑤- are the parameters

q Maximum Likelihood
q Log likelihood:

𝑙 𝑤 =W
0,(

?

𝑦0 log 𝑝 𝑌 = 1 𝑋 = 𝑥0; 𝒘 + 1 − 𝑦0 log 1 − 𝑝 𝑌 = 1 𝑋 = 𝑥0; 𝒘

q There’s no close form solution
q Gradient Descent
q Update w based on training data
q Chain-rule for the gradient
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Gradient Descent
q Gradient Descent is an itera�ve op�miza�on algorithm for finding the minimum 

of a func�on (e.g., the nega�ve log likelihood)
q For a func�on F(x) at a point a, F(x) decreases fastest if we go in the direc�on of

the nega�ve gradient of a

When the gradient is zero, we
arrive at the local minimum
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What Is Bayesian Classification?

q A statistical classifier
q Perform probabilistic prediction (i.e., predict class membership probabilities)

q Foundation—Based on Bayes’ Theorem 
q Performance
q A simple Bayesian classifier, naïve Bayesian classifier, has comparable 

performance with decision tree and selected neural network classifiers
q Incremental
q Each training example can incrementally increase/decrease the probability that 

a hypothesis is correct—prior knowledge can be combined with observed data
q Theoretical Standard
q Even when Bayesian methods are computationally intractable, they can provide 

a standard of optimal decision making against which other methods can be 
measured
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Bayes’ Theorem: Basics
q Total probability Theorem:

p B =W
!

p B A! p(A!)

q Bayes’ Theorem:

p H|𝐗 =
p 𝐗 H P H

p(𝐗)
∝ p 𝐗 H P H

q X: a data sample (“evidence”)
q H: X belongs to class C

posteriori probability prior probabilitylikelihood

What we should choose What we knew previouslyWhat we just see

Prediction can be done based on Bayes’ Theorem:

Classifica�on is to derive the maximum posteriori
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Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified: 
X = (age <=30, Income = medium,
Student = yes, Credit_rating = Fair)

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Naïve Bayes Classifier: An Example
q P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357
q Compute P(X|Ci) for each class

P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

q X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore,  X belongs to class (“buys_computer = yes”)

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Naïve Bayes Classifier: Making a Naïve Assumption

q Practical difficulty of Naïve Bayes inference:  It requires initial knowledge of many 
probabilities, which may not be available or involving significant computational cost

q A Naïve Special Case

q Make an additional assumption to simplify the model, but achieve comparable 
performance.

q Only need to count the class distribution w.r.t. features

a}ributes are condi�onally independent 
(i.e., no dependence rela�on between a}ributes)

p X|𝐶! = ∏"p x" C#) = p x$ C#) * p x% C#) ***** p x& C#)
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Avoiding the Zero-Probability Problem

q Naïve Bayesian prediction requires each conditional probability be non-zero
q Otherwise, the predicted probability will be zero

q Example.  Suppose a dataset with 1000 tuples:
income = low (0), income= medium (990), and income = high (10)

q Use Laplacian correction (or Laplacian estimator)
q Adding 1 to each case  

Prob(income = low) = 1/(1000 + 3)
Prob(income = medium) = (990 + 1)/(1000 + 3)
Prob(income = high) = (10 + 1)/(1000 + 3)

q The “corrected” probability estimates are close to their “uncorrected” 
counterparts

p X|𝐶! = ∏' 𝑝 𝑥' 𝐶!) = 𝑝 𝑥$ 𝐶!) * 𝑝 𝑥% 𝐶!) ***** 𝑝 𝑥( 𝐶!)
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Naïve Bayes Classifier: Strength vs. Weakness
q Strength 
q Easy to implement 
q Good results obtained in most of the cases

q Weakness
q Assumption: attributes conditional independence, therefore loss of accuracy
q Practically, dependencies exist among variables 
q E.g., Patients: Profile: age, family history, etc. 

Symptoms: fever, cough etc.
Disease: lung cancer, diabetes, etc. 

q Dependencies among these cannot be modeled by Naïve Bayes Classifier
q How to deal with these dependencies? 
q Use Bayesian Belief Networks (to be covered in the next chapter)
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Model Evaluation and Selection

q Evaluation metrics
q How can we measure accuracy?

q Other metrics to consider?

q Use validation test set of class-labeled tuples instead of training set when assessing 
accuracy

q Methods for estimating a classifier’s accuracy 
q Holdout method 

q Cross-validation
q Bootstrap

q Comparing classifiers:
q ROC Curves
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Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer =  yes buy_computer = no Total
buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

q Confusion Matrix:

q In a confusion matrix w. m classes, CMi,j indicates # of tuples in class i that 
were labeled by the classifier as class j

q May have extra rows/columns to provide totals
q Example of Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)
¬ C1 False Positives (FP) True Negatives (TN)
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Classifier Evaluation Metrics: Accuracy, Error Rate, 
Sensitivity and Specificity

q Classifier accuracy, or 
recognition rate

q Percentage of test set tuples 
that are correctly classified

Accuracy = (TP + TN)/All
q Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

q Class imbalance problem
q One class may be rare
q E.g., fraud, or HIV-positive

q Significant majority of the negative class and 
minority of the positive class

q Measures handle the class imbalance problem
q Sensitivity (recall): True positive recognition 

rate
q Sensitivity = TP/P

q Specificity: True negative recognition rate
q Specificity = TN/N
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

q Precision: Exactness: what % of tuples that the classifier labeled as positive are 
actually positive?

q Recall: Completeness: what % of positive tuples did the classifier label as positive?

q Range: [0, 1]
q The “inverse” relationship between precision & recall
q F measure (or F-score): harmonic mean of precision and recall
q In general, it is the weighted measure of precision & recall

q F1-measure (balanced F-measure) 
q That is,  when β = 1,

Assigning β times as much 
weight to recall as to precision)

P = Precision =
TP

TP + FP

R = Recall =
TP

TP + FN

F) =
1

𝛼 * 1P + (1 − 𝛼) * 1R
=

β% + 1 PR
β%P + R

F! =
2PR
P + R



49

Classifier Evaluation Metrics: Example

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity)

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.50 (accuracy)

q Use the same confusion matrix, calculate the measure just introduced

q Sensitivity = TP/P = 90/300 = 30%
q Specificity = TN/N = 9560/9700 = 98.56%
q Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
q Error rate = (FP + FN)/All = (140 + 210)/10000 = 3.50%
q Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%          
q Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
q F1 = 2 P × R /(P + R) = 2 × 39.13% × 30.00%/(39.13% + 30%) = 33.96% 
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Classifier Evaluation: Holdout & Cross-Validation
q Holdout method
q Given data is randomly partitioned into two independent sets
q Training set (e.g., 2/3) for model construction
q Test set (e.g., 1/3) for accuracy estimation

q Repeated random sub-sampling validation: a variation of holdout
q Repeat holdout k times, accuracy = avg. of the accuracies obtained

q Cross-validation (k-fold, where k = 10 is most popular)
q Randomly partition the data into k mutually exclusive subsets, each 

approximately equal size
q At i-th iteration, use Di as test set and others as training set
q Leave-one-out: k folds where k = # of tuples, for small sized data
q *Stratified cross-validation*: folds are stratified so that class distribution, 

in each fold is approximately the same as that in the initial data
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Classifier Evaluation: Bootstrap
q Bootstrap
q Works well with small data sets
q Samples the given training tuples uniformly with replacement
q Each time a tuple is selected, it is equally likely to be selected again and re-added 

to the training set

q Several bootstrap methods, and a common one is .632 bootstrap
q A data set with d tuples is sampled d times, with replacement, resulting in a training 

set of d samples.  The data tuples that did not make it into the training set end up 
forming the test set.  About 63.2% of the original data end up in the bootstrap, and 
the remaining 36.8% form the test set (since (1 – 1/d)d ≈ e-1 = 0.368)

q Repeat the sampling procedure k times, overall accuracy of the model:
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Model Selection: ROC Curves

q ROC (Receiver Operating Characteristics) curves: 
for visual comparison of classification models

q Originated from signal detection theory
q Shows the trade-off between the true positive 

rate and the false positive rate
q The area under the ROC curve (AUC: Area Under 

Curve) is a measure of the accuracy of the model
q Rank the test tuples in decreasing order: the one 

that is most likely to belong to the positive class 
appears at the top of the list

q The closer to the diagonal line (i.e., the closer the 
area is to 0.5), the less accurate is the model

q Vertical axis represents the 
true positive rate

q Horizontal axis rep. the false 
positive rate

q The plot also shows a diagonal 
line

q A model with perfect accuracy 
will have an area of 1.0
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Issues Affecting Model Selection

q Accuracy
q classifier accuracy: predicting class label

q Speed

q time to construct the model (training time)
q time to use the model (classification/prediction time)

q Robustness: handling noise and missing values

q Scalability: efficiency in disk-resident databases 

q Interpretability
q understanding and insight provided by the model

q Other measures, e.g., goodness of rules, such as decision tree size or compactness 
of classification rules
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Chapter 8. Classification: Basic Concepts

q Classification: Basic Concepts

q Decision Tree Induction

q Bayes Classification Methods

q Linear Classifier

q Model Evaluation and Selection

q Techniques to Improve Classification Accuracy: Ensemble Methods

q Additional Concepts on Classification

q Summary
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Ensemble Methods: Increasing the Accuracy

q Ensemble methods
q Use a combination of models to increase accuracy
q Combine a series of k learned models, M1, M2, …, Mk, 

with the aim of creating an improved model M*
q Popular ensemble methods
q Bagging: Trains each model using a subset of the

training set, and models learned in parallel
q Boosting:  Trains each new model instance to 

emphasize the training instances that previous models 
mis-classified, and models learned in order
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Bagging: Bootstrap Aggregation
q Analogy: Diagnosis based on multiple doctors’ majority vote
q Training
q Given a set D of d tuples, at each iteration i, a training set Di of d tuples is 

sampled with replacement from D (i.e., bootstrap)
q A classifier model Mi is learned for each training set Di

q Classification: classify an unknown sample X
q Each classifier Mi returns its class prediction
q The bagged classifier M* counts the votes and assigns the class with the most 

votes to X
q Prediction:  It can be applied to the prediction of continuous values by taking the 

average value of each prediction for a given test tuple
q Accuracy: Improved accuracy in prediction
q Often significantly better than a single classifier derived from D
q For noise data: Not considerably worse, more robust 
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Random Forest: Basic Concepts
q Random Forest (first proposed by L. Breiman in 2001) 

q A variation of bagging for decision trees

q Data bagging

q Use a subset of training data by sampling with replacement for each tree

q Feature bagging

q At each node use a random selection of attributes as candidates and split by
the best attribute among them

q Compared to original bagging, increases the diversity among generated trees

q During classification, each tree votes and the most popular class is returned
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Random Forest
q Two Methods to construct Random Forest:

q Forest-RI (random input selection):  Randomly select, at each node, F attributes 
as candidates for the split at the node. The CART methodology is used to grow 
the trees to maximum size

q Forest-RC (random linear combinations): Creates new attributes (or features) 
that are a linear combination of the existing attributes (reduces the correlation 
between individual classifiers)

q Comparable in accuracy to Adaboost, but more robust to errors and outliers 

q Insensitive to the number of attributes selected for consideration at each split, and 
faster than typical bagging or boosting
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Boosting
q Analogy: Consult several doctors, based on a combination of weighted diagnoses—

weight assigned based on the previous diagnosis accuracy
q How boosting works?

q Weights are assigned to each training tuple
q A series of k classifiers is iteratively learned
q After a classifier Mi is learned, the weights are updated to allow the subsequent 

classifier, Mi+1, to pay more attention to the training tuples that were 
misclassified by Mi

q The final M* combines the votes of each individual classifier, where the weight 
of each classifier's vote is a function of its accuracy

q Boosting algorithm can be extended for numeric prediction
q Comparing with bagging: Boosting tends to have greater accuracy, but it also risks 

overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

q Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)
q Initially, all the weights of tuples are set the same (1/d)
q Generate k classifiers in k rounds.  At round i,

q Tuples from D are sampled (with replacement) to form a training set Di of 
the same size

q Each tuple’s chance of being selected is based on its weight
q A classification model Mi is derived from Di

q Its error rate is calculated using Di as a test set
q If a tuple is misclassified, its weight is increased; otherwise, it is decreased

q Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi error rate 
is the sum of the weights of the misclassified tuples: 

q The weight of classifier Mi’s vote is
)(
)(1log
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Classification of Class-Imbalanced Data Sets
q Class-imbalance problem: Rare positive examples but numerous negative ones
q E.g., medical diagnosis, fraud transaction, accident (oil-spill), and product fault

q Traditional methods assume a balanced distribution of classes and equal error 
costs: not suitable for class-imbalanced data
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q Typical methods on imbalanced data in two-class classification 
q Oversampling: Re-sampling of data from positive class
q Under-sampling: Randomly eliminate tuples from negative class
q Threshold-moving: Move the decision threshold, t, so that the 

rare class tuples are easier to classify, and hence, less chance of 
costly false negative errors

q Ensemble techniques: Ensemble multiple classifiers introduced 
above

q Still difficult for class imbalance problem on multiclass tasks
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Chapter 8. Classification: Basic Concepts

q Classification: Basic Concepts

q Decision Tree Induction

q Bayes Classification Methods

q Linear Classifier

q Model Evaluation and Selection

q Techniques to Improve Classification Accuracy: Ensemble Methods

q Additional Concepts on Classification

q Summary
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Summary

q Classification: Model construction from a set of training data

q Effective and scalable methods  

q Decision tree induction, Bayes classification methods, linear classifier, … 

q No single method has been found to be superior over all others for all data sets

q Evaluation metrics: Accuracy, sensitivity, specificity, precision, recall, F measure 

q Model evaluation: Holdout, cross-validation, bootstrapping, ROC curves (AUC)

q Improve Classification Accuracy: Bagging, boosting

q Additional concepts on classification: Multiclass classification, semi-supervised 

classification, active learning, transfer learning, weak supervision
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Bayes’ Theorem: Basics
q Total probability Theorem:

q Bayes’ Theorem:
q Let X be a data sample (“evidence”): class label is unknown
q Let H be a hypothesis that X belongs to class C 
q Classification is to determine P(H|X), (i.e., posteriori probability): the probability 

that the hypothesis holds given the observed data sample X
q P(H) (prior probability): the initial probability
q E.g., X will buy computer, regardless of age, income, …

q P(X): probability that sample data is observed
q P(X|H) (likelihood): the probability of observing the sample X, given that the 

hypothesis holds
q E.g., Given that X will buy computer, the prob. that X is 31..40, medium income
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Classification Is to Derive the Maximum Posteriori

q Let D be a training set of tuples and their associated class labels, and each tuple is 
represented by an n-D attribute vector X = (x1, x2, …, xn)

q Suppose there are m classes C1, C2, …, Cm.

q Classification is to derive the maximum posteriori, i.e., the maximal P(Ci|X)

q This can be derived from Bayes’ theorem

q Since P(X) is constant for all classes, only                                        

needs to be maximized
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Linear Discriminant Analysis (LDA)
q Linear Discriminant Analysis (LDA) works when the attributes are all continuous
q For the categorical attributes, discriminant correspondence analysis is the 

equivalent technique
q Basic Ideas: Project all samples on a line such that different classes are well separated
q Example: Suppose we have 2 classes and 2-dimensional samples 𝑥(, … , 𝑥-
q 𝑛( samples come from class 1
q 𝑛) samples come from class 2

q Let the line direction be given by unit vector 𝒗
q There are two candidates of projections
q Vertical: 𝒗 = (0,1)
q Horizontal: 𝒗 = (1,0)

q Which one looks better?
q How to mathematically measure it?
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Fisher’s LDA (Linear Discriminant Analysis)

q 𝒗𝑻𝒙𝒊 is the distance of projection of 𝒙𝒊 from the origin
q Let 𝝁𝟏 and 𝝁𝟐 be the means of class 1 and class 2 in the original 

space

q 𝝁𝟏 =
(
-!
∑0∈#JKLL (𝒙𝒊

q 𝝁𝟐 =
(
-"
∑0∈#JKLL )𝒙𝒊

q The distance between the means of the projected points
q |𝒗𝑻𝝁𝟏 − 𝒗𝑻𝝁𝟐|
q Good?  No. Horizontal one may have larger distance
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Fisher’s LDA (con’t)

q Normalization needed
q Scatter: Sample variance multiplied by 𝑛

q 𝑠( = ∑0∈#JKLL ( 𝒗𝑻𝒙𝒊 − 𝒗𝑻𝝁𝟏
)

q 𝑠) = ∑0∈#JKLL ) 𝒗𝑻𝒙𝒊 − 𝒗𝑻𝝁𝟐
)

q Fisher’s LDA

q Maximize 𝐽 𝒗 = 𝒗𝑻𝝁𝟏O𝒗𝑻𝝁𝟐
"

P!>P"
q Closed-form optimal solution

Smaller 
Scatter

Bigger
Scatter
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Fisher’s LDA: Summary

q Advantages
q Useful for dimension reduction
q Easy to extend to multi-classes

q Fisher’s LDA will fail
q When 𝝁𝟏 = 𝝁𝟐, 𝐽 𝒗 is always 0.
q When classes have large overlap when projected to any line


