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Chapter 10. Cluster Analysis: Basic Concepts and Methods

q Cluster Analysis: An Introduction

q Partitioning Methods

q Hierarchical Methods

q Density- and Grid-Based Methods

q Evaluation of Clustering (Coverage will be based on the available time)

q Summary
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Cluster Analysis: An Introduction
q What Is Cluster Analysis?

q Applications of Cluster Analysis

q Cluster Analysis: Requirements and Challenges

q Cluster Analysis: A Multi-Dimensional Categorization

q An Overview of Typical Clustering Methodologies

q An Overview of Clustering Different Types of Data

q An Overview of User Insights and Clustering
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What Is Cluster Analysis?
q What is a cluster?  
q A cluster is a collection of data objects which are
q Similar (or related) to one another within the same group (i.e., cluster)
q Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)

q Cluster analysis (or clustering, data segmentation, …)
q Given a set of data points, partition them into a set of groups (i.e., 

clusters) which are as similar as possible
q Cluster analysis is unsupervised learning (i.e., no predefined classes)
q This contrasts with classification (i.e., supervised learning) 

q Typical ways to use/apply cluster analysis
q As a stand-alone tool to get insight into data distribution, or 
q As a preprocessing (or intermediate) step for other algorithms
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What Is Good Clustering?
q A good clustering method will produce high quality clusters which should have

q High intra-class similarity: Cohesive within clusters

q Low inter-class similarity: Distinctive between clusters

q Quality function

q There is usually a separate “quality” function that measures the “goodness” of 
a cluster

q It is hard to define “similar enough” or “good enough”

q The answer is typically highly subjective

q There exist many similarity measures and/or functions for different applications

q Similarity measure is critical for cluster analysis
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Cluster Analysis: Applications
q A key intermediate step for other data mining tasks
q Generating a compact summary of data for classification, pattern discovery, 

hypothesis generation and testing, etc.
q Outlier detection: Outliers—those “far away” from any cluster

q Data summarization, compression, and reduction
q Ex. Image processing: Vector quantization

q Collaborative filtering, recommendation systems, or customer segmentation
q Find like-minded users or similar products

q Dynamic trend detection
q Clustering stream data and detecting trends and patterns

q Multimedia data analysis, biological data analysis and social network analysis
q Ex. Clustering images or video/audio clips, gene/protein sequences, etc.
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Considerations for Cluster Analysis
q Partitioning criteria

q Single level vs. hierarchical partitioning (often, multi-level hierarchical 
partitioning is desirable, e.g., grouping topical terms)

q Separation of clusters

q Exclusive (e.g., one customer belongs to only one region) vs. non-
exclusive (e.g., one document may belong to more than one class)

q Similarity measure

q Distance-based (e.g., Euclidean, road network, vector)  vs. connectivity-
based (e.g., density or contiguity)

q Clustering space

q Full space (often when low dimensional) vs. subspaces (often in high-
dimensional clustering)
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Requirements and Challenges
q Quality
q Ability to deal with different types of attributes: Numerical, categorical, text, 

multimedia, networks, and mixture of multiple types
q Discovery of clusters with arbitrary shape
q Ability to deal with noisy data

q Scalability
q Clustering all the data instead of only on samples
q High dimensionality
q Incremental or stream clustering and insensitivity to input order

q Constraint-based clustering
q User-given preferences or constraints; domain knowledge; user queries  

q Interpretability and usability
q The final generated clusters should be semantically meaningful and useful
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Clustering Tendency: Whether the Data 
Contains Inherent Grouping Structure

q Assessing the suitability of clustering
q (i.e., whether the data has any inherent grouping structure)

q Determining clustering tendency or clusterability
q A hard task because there are so many different definitions of clusters
q E.g., partitioning, hierarchical, density-based, graph-based, etc.

q Even fixing cluster type, still hard to define an appropriate null model for a data set
q Still, there are some clusterability assessment methods, such as
q Spatial histogram: Contrast the histogram of the data with that generated from 

random samples  
q Distance distribution: Compare the pairwise point distance from the data with 

those from the randomly generated samples 
q Hopkins Statistic: A sparse sampling test for spatial randomness
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Testing Clustering Tendency: A Spatial Histogram Approach

q Spatial Histogram Approach: Contrast the d-dimensional histogram of the input 
dataset D with the histogram generated from random samples

q Dataset D is clusterable if the distributions of two histograms are rather different
q Method outline
q Divide each dimension 

into equi-width bins, 
count how many points 
lie in each cells, and 
obtain the empirical 
joint probability mass 
function (EPMF)

q Do the same for the randomly sampled data
q Compute how much they differ using the Kullback-Leibler (KL) divergence value 
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Chapter 10. Cluster Analysis: Basic Concepts and Methods

q Cluster Analysis: An Introduction

q Partitioning Methods

q Hierarchical Methods

q Density- and Grid-Based Methods

q Evaluation of Clustering

q Summary
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Partitioning-Based Clustering Methods

q Basic Concepts of Partitioning Algorithms

q The K-Means Clustering Method

q Initialization of K-Means Clustering

q The K-Medoids Clustering Method

q The K-Medians and K-Modes Clustering Methods

q The Kernel K-Means Clustering Method
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Partitioning Algorithms: Basic Concepts
q Partitioning method: Discovering the groupings in the data by optimizing a specific 

objective function and iteratively improving the quality of partitions

q K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters 
so that an objective function is optimized (e.g., the sum of squared distances is 
minimized, where ck is the centroid or medoid of cluster Ck)

q A typical objective function: Sum of Squared Errors (SSE)

q Problem definition:  Given K, find a partition of K clusters that optimizes the chosen 
partitioning criterion

q Global optimal: Needs to exhaustively enumerate all partitions

q Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.
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The K-Means Clustering Method 

q K-Means (MacQueen’67, Lloyd’57/’82)
q Each cluster is represented by the center of the cluster

q Given K, the number of clusters, the K-Means clustering algorithm is outlined as 
follows

q Select K points as initial centroids

q Repeat

q Form K clusters by assigning each point to its closest centroid

q Re-compute the centroids (i.e., mean point) of each cluster

q Until convergence criterion is satisfied

q Different kinds of measures can be used

q Manhattan distance (L1 norm), Euclidean distance (L2 norm), Cosine similarity
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Example: K-Means Clustering

The original data points & 
randomly select K = 2 centroids 

Select K points as initial centroids
Repeat
• Form K clusters by assigning each point to its closest centroid
• Re-compute the centroids (i.e., mean point) of each cluster
Until convergence criterion is satisfied

Assign 
points to 
clusters

Recompute
cluster 
centers

Redo point assignment  

Execution of the K-Means Clustering Algorithm
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Discussion on the K-Means Method
q Efficiency: O(tKn) where n: # of objects, K: # of clusters, and t: # of iterations
q Normally, K, t << n; thus, an efficient method

q K-means clustering often terminates at a local optimal
q Initialization can be important to find high-quality clusters

q Need to specify K, the number of clusters, in advance 
q There are ways to automatically determine the “best” K
q In practice, one often runs a range of values and selected the “best” K value

q Sensitive to noisy data and outliers
q Variations: Using K-medians, K-medoids, etc.

q K-means is applicable only to objects in a continuous n-dimensional space 
q Using the K-modes for categorical data

q Not suitable to discover clusters with non-convex shapes
q Using density-based clustering, kernel K-means, etc.
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Variations of K-Means

q There are many variants of the K-Means method, varying in different aspects

q Choosing better initial centroid estimates

q K-means++, Intelligent K-Means, Genetic K-Means

q Choosing different representative prototypes for the clusters

q K-Medoids, K-Medians, K-Modes

q Applying feature transformation techniques

q Weighted K-Means, Kernel K-Means
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Poor Initialization in K-Means May Lead to Poor Clustering

q Rerun of the K-Means using another random K seeds

q This run of K-Means generates a poor quality clustering  

Recompute
cluster 
centers

Assign 
points to 
clusters

Another random selection of k 
centroids for the same data points
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Initialization of K-Means: Problem and Solution
q Different initializations may generate rather different clustering 

results (some could be far from optimal)

q Original proposal (MacQueen’67): Select K seeds randomly

q Need to run the algorithm multiple times using different seeds

q There are many methods proposed for better initialization of k seeds

q K-Means++ (Arthur & Vassilvitskii’07):  

q The first centroid is selected at random

q The next centroid selected is the one that is farthest from the currently selected 
(selection is based on a weighted probability score)

q The selection continues until K centroids are obtained 
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Handling Outliers: From K-Means to K-Medoids
q The K-Means algorithm is sensitive to outliers!—since an object with an extremely 

large value may substantially distort the distribution of the data
q K-Medoids: Instead of taking the mean value of the object in a cluster as a reference 

point, medoids can be used, which is the most centrally located object in a cluster

q The K-Medoids clustering algorithm:

q Select K points as the initial representative objects (i.e., as initial K medoids)
q Repeat

q Assigning each point to the cluster with the closest medoid
q Randomly select a non-representative object oi

q Compute the total cost S of swapping the medoid m with oi

q If S < 0, then swap m with oi to form the new set of medoids

q Until convergence criterion is satisfied
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PAM: A Typical K-Medoids Algorithm
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Discussion on K-Medoids Clustering
q K-Medoids Clustering: Find representative objects (medoids) in clusters
q PAM (Partitioning Around Medoids: Kaufmann & Rousseeuw 1987)
q Starts from an initial set of medoids, and 

q Iteratively replaces one of the medoids by one of the non-medoids if it improves 
the total sum of the squared errors (SSE) of the resulting clustering

q PAM works effectively for small data sets but does not scale well for large data sets 
(due to the computational complexity)

q Computational complexity: PAM: O(K(n − K)2)  (quite expensive!)
q Efficiency improvements on PAM

q CLARA (Kaufmann & Rousseeuw, 1990):
q PAM on samples; O(Ks2 + K(n − K)), s is the sample size

q CLARANS (Ng & Han, 1994): Randomized re-sampling, ensuring efficiency + quality
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K-Medians: Handling Outliers by Computing Medians 
q Medians are less sensitive to outliers than means
q Think of the median salary vs. mean salary of a large firm when adding a few top 

executives!
q K-Medians:  Instead of taking the mean value of the object in a cluster as a 

reference point, medians are used (L1-norm as the distance measure)
q The criterion function for the K-Medians algorithm:  

q The K-Medians clustering algorithm:
q Select K points as the initial representative objects (i.e., as initial K medians)

q Repeat
q Assign every point to its nearest median
q Re-compute the median using the median of each individual feature

q Until convergence criterion is satisfied
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K-Modes: Clustering Categorical Data
q K-Means cannot handle non-numerical (categorical) data
q Mapping categorical value to 1/0 cannot generate quality clusters 

q K-Modes: An extension to K-Means by replacing means of clusters with modes
q Mode: The value that appears most often in a set of data values

q Dissimilarity measure between object X and the center of a cluster Z
q Φ(xj, zj) = 1 – nj

r/nl when xj = zj ; 1 when xj ǂ zj

q where zj is the categorical value of attribute j in Zl, nl is the number of objects 
in cluster l, and nj

r is the number of objects whose attribute value is r
q This dissimilarity measure (distance function) is frequency-based
q Algorithm is still based on iterative object cluster assignment and centroid update 
q A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership 

value for each object to each cluster
q A mixture of categorical and numerical data: Using a K-Prototype method
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Example: Kernel K-Means Clustering

q The above data set cannot generate quality clusters by K-Means since it contains 
non-convex clusters

The original data set The result of K-Means clustering The result of Gaussian Kernel K-Means clustering
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Kernel K-Means Clustering
q Kernel K-Means can be used to detect non-convex clusters
q A region is convex if it contains all the line segments connecting 

any pair of its points. Otherwise, it is concave
q K-Means can only detect clusters that are linearly separable

q Idea: Project data onto the high-dimensional kernel space, and                 
then perform K-Means clustering

q Map data points in the input space onto a high-dimensional feature space using 
the kernel function

q Perform K-Means on the mapped feature space
q Computational complexity is higher than K-Means 
q Need to compute and store n x n kernel matrix generated from the kernel 

function on the original data, where n is the number of points
q Spectral clustering can be considered as a variant of Kernel K-Means clustering
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Other Methods for Finding K, the Number of Clusters

q Empirical method
q # of clusters:                     for a dataset of n points (e.g., n = 200, k = 10)

q Elbow method: Use the turning point in the curve of the sum 
of within cluster variance with respect to the # of clusters

q Cross validation method
q Divide a given data set into m parts
q Use m – 1 parts to obtain a clustering model
q Use the remaining part to test the quality of the clustering
q For example, for each point in the test set, find the closest centroid, and use the 

sum of squared distance between all points in the test set and the closest centroids 
to measure how well the model fits the test set

q For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different 
k’s, and find # of clusters that fits the data the best

/ 2k n»
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Chapter 10. Cluster Analysis: Basic Concepts and Methods

q Cluster Analysis: An Introduction

q Partitioning Methods

q Hierarchical Methods

q Density- and Grid-Based Methods

q Evaluation of Clustering

q Summary
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Hierarchical Clustering Methods

q Basic Concepts of Hierarchical Algorithms

q Agglomerative Clustering Algorithms

q Divisive Clustering Algorithms

q Extensions to Hierarchical Clustering

q BIRCH: A Micro-Clustering-Based Approach

q CURE: Exploring Well-Scattered Representative Points

q CHAMELEON: Graph Partitioning on the KNN Graph of the Data

q Probabilistic Hierarchical Clustering
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Hierarchical Clustering: Basic Concepts
q Hierarchical clustering  

q Generate a clustering hierarchy 
(drawn as a dendrogram)

q Not required to specify K, the 
number of clusters 

q More deterministic

q No iterative refinement

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)



35

Dendrogram: Shows How Clusters are Merged
q Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level 

nested partitioning
q A clustering of the data objects is obtained by cutting the dendrogram at the 

desired level, then each connected component forms a cluster

Hierarchical clustering 
generates a dendrogram
(a hierarchy of clusters)
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Hierarchical Clustering: Basic Concepts
q Two categories of algorithms:

q Agglomerative: Start with singleton clusters, continuously merge two 
clusters at a time to build a bottom-up hierarchy of clusters

q Single link (nearest neighbor)
q Complete link (diameter)
q Average link (group average)
q Centroid link (centroid similarity)

q Divisive: Start with a huge macro-cluster, split it continuously into 
two groups, generating a top-down hierarchy of clusters

q Splitting criteria
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Agglomerative
q Single link (nearest neighbor)
q The similarity between two clusters is the similarity between 

their most similar (nearest neighbor) members
q Emphasizing more on close regions, ignoring the overall 

structure of the cluster
q Capable of clustering non-elliptical shaped group of objects
q Sensitive to noise and outliers

q Complete link (diameter)
q The similarity between two clusters is the similarity between 

their most dissimilar members 
q Merge two clusters to form one with the smallest diameter
q Nonlocal in behavior, obtaining compact shaped clusters
q Sensitive to outliers

X
X

X
X
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Agglomerative

q Agglomerative clustering with average link
q Average link:  The average distance between an 

element in one cluster and an element in the 
other (i.e., all pairs in two clusters)

q Expensive to compute

q Agglomerative clustering with centroid link 
q Centroid link: The distance between the centroids 

of two clusters

X
X

X
X

Ca: Na
Cb: Nb
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More on Algorithm Design for Divisive Clustering
q Choosing which cluster to split

q Check the sums of squared errors of the clusters and choose the one with the 
largest value

q Splitting criterion: Determining how to split

q For categorical data, Gini-index can be used

q Handling the noise

q Use a threshold to determine the termination criterion (do not generate 
clusters that are too small because they contain mainly noises)
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Extensions to Hierarchical Clustering
q Major weaknesses of hierarchical clustering methods

q Can never undo what was done previously

q Do not scale well

q Time complexity of at least O(n2), where n is the number of total objects

q Other hierarchical clustering algorithms

q BIRCH (1996): Use CF-tree and incrementally adjust the quality of sub-clusters

q CHAMELEON (1999): Use graph partitioning methods on the K-nearest neighbor 
graph of the data
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BIRCH (Balanced Iterative Reducing 
and Clustering Using Hierarchies)

q Zhang, Ramakrishnan & Livny, SIGMOD’96

q Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for 
multiphase clustering

q Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of 
the data that tries to preserve the inherent clustering structure of the data)  

q Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree 

q Scales linearly: finds a good clustering with a single scan and improves the quality with a 
few additional scans

q Weakness: handles only numeric data, and sensitive to the order of the data record

43
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nClustering feature: 
n Summary of the statistics for a given subcluster: the 0-th, 1st, and 2nd 

moments of the subcluster from the statistical point of view
n Registers crucial measurements for computing cluster and utilizes storage 

efficiently

Clustering Feature (CF): CF = (N, LS, SS)

N: Number of data points

LS: linear sum of N points:

SS: square sum of N points

Clustering Feature Vector in BIRCH
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CF-Tree in BIRCH

q A CF tree is a height-balanced tree that 
stores the clustering features for a 
hierarchical clustering 

q A nonleaf node in a tree has descendants 
or “children”

q The nonleaf nodes store sums of the CFs 
of their children

q A CF tree has two parameters
q Branching factor: max # of children
q Threshold: max diameter of sub-clusters 

stored at the leaf nodes
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The CF Tree Structure

CF1
child1

CF3
child3

CF2
child2

CF6
child6

CF1
child1

CF3
child3

CF2
child2

CF5
child5

CF1 CF2 CF6prev next CF1 CF2 CF4prev next

B = 7

L = 6

Root

Non-leaf node

Leaf node Leaf node
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The Birch Algorithm

q Cluster Diameter

q For each point in the input
q Find closest leaf entry
q Add point to leaf entry and update CF 
q If entry diameter > max_diameter, then split leaf, and possibly parents

q Algorithm is O(n)
q Concerns
q Sensitive to insertion order of data points
q Since we fix the size of leaf nodes, so clusters may not be so natural
q Clusters tend to be spherical given the radius and diameter measures
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CHAMELEON: Hierarchical Clustering Using 
Dynamic Modeling (1999)

q CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999 
q Measures the similarity based on a dynamic model

q Two clusters are merged only if the interconnectivity and closeness (proximity)
between two clusters are high relative to the internal interconnectivity of the 
clusters and closeness of items within the clusters 

q Graph-based, and a two-phase algorithm

1. Use a graph-partitioning algorithm: cluster objects into a large number of 
relatively small sub-clusters

2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters 
by repeatedly combining these sub-clusters

48
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Overall Framework of CHAMELEON

Construct (K-NN)

Sparse Graph Partition the Graph

Merge Partition

Final Clusters

Data Set

K-NN Graph

P and q are connected if 
q is among the top k 
closest neighbors of p

Relative interconnectivity:  
connectivity of c1 and c2

over internal connectivity

Relative closeness: 
closeness of c1 and c2 over 
internal closeness

49
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CHAMELEON (Clustering Complex Objects)
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Density-Based and Grid-Based Clustering Methods

qDensity-Based Clustering

q Basic Concepts

q DBSCAN: A Density-Based Clustering Algorithm

q OPTICS: Ordering Points To Identify Clustering Structure

qGrid-Based Clustering Methods 

q Basic Concepts

q STING: A Statistical Information Grid Approach

q CLIQUE: Grid-Based Subspace Clustering
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Density-Based Clustering Methods
q Clustering based on density (a local cluster criterion), such as density-connected 

points
q Major features:
q Discover clusters of arbitrary shape
q Handle noise
q One scan (only examine the local region to justify density)
q Need density parameters as termination condition

q Several interesting studies:
q DBSCAN: Ester, et al. (KDD’96)
q OPTICS: Ankerst, et al (SIGMOD’99)
q DENCLUE: Hinneburg & D. Keim (KDD’98)
q CLIQUE: Agrawal, et al. (SIGMOD’98) (also, grid-based)
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DBSCAN: A Density-Based Spatial Clustering Algorithm
q DBSCAN (M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, KDD’96)
q Discovers clusters of arbitrary shape: Density-Based 

Spatial Clustering of Applications with Noise 
q A density-based notion of cluster
q A cluster is defined as a maximal set of density-connected 

points
q Two parameters:
q Eps (ε): Maximum radius of the neighborhood
q MinPts: Minimum number of points in the                      

Eps-neighborhood of a point
q The Eps(ε)-neighborhood of a point q: 
q NEps(q): {p belongs to D | dist(p, q) ≤ Eps}

MinPts = 5
Eps = 1 cm

p

q

Core

Border

Outlier

Border point: in cluster but 
neighborhood is not dense

Outlier/noise: 
not in a cluster

Core point: dense 
neighborhood
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DBSCAN: Density-Reachable and Density-Connected
q Directly density-reachable:
q A point p is directly density-reachable from a point q w.r.t. 

Eps (ε), MinPts if 
q p belongs to NEps(q)
q core point condition: |NEps (q)| ≥ MinPts

q Density-reachable: 
q A point p is density-reachable from a point q w.r.t. Eps, 

MinPts if there is a chain of points p1, …, pn, p1 = q, pn = p
such that pi+1 is directly density-reachable from pi

q Density-connected:
q A point p is density-connected to a point q w.r.t. Eps, 

MinPts if there is a point o such that both p and q are 
density-reachable from o w.r.t. Eps and MinPts

p

q
p2

p q

o

MinPts = 5
Eps = 1 cm

p

q
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DBSCAN: The Algorithm
q Algorithm
q Arbitrarily select a point p
q Retrieve all points density-reachable 

from p w.r.t. Eps and MinPts
q If p is a core point, a cluster is formed
q If p is a border point, no points are density-reachable 

from p, and DBSCAN visits the next point of the database
q Continue the process until all of the points have been 

processed
q Computational complexity
q If a spatial index is used, the computational complexity of DBSCAN 

is O(nlogn), where n is the number of database objects 
q Otherwise, the complexity is O(n2)

Core

Border

Outlier

Border point: in cluster but 
neighborhood is not dense

Outlier/noise: 
not in a cluster

Core point: dense 
neighborhood
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DBSCAN Is Sensitive to the Setting of Parameters

Ack. Figures from G. Karypis, E.-H. Han, and V. Kumar, COMPUTER, 32(8), 1999 
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Clustering Validation
q Clustering Validation: Basic Concepts

q Clustering Evaluation: Measuring Clustering Quality

q External Measures for Clustering Validation

q I: Matching-Based Measures

q II: Entropy-Based Measures

q III: Pairwise Measures

q Internal Measures for Clustering Validation

q Relative Measures

q Cluster Stability

q Clustering Tendency
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Clustering Validation and Assessment
q Major issues on clustering validation and assessment

q Clustering evaluation

q Evaluating the goodness of the clustering 

q Clustering stability

q To understand the sensitivity of the clustering result to various algorithm 
parameters, e.g., # of clusters

q Clustering tendency

q Assess the suitability of clustering, i.e., whether the data has any inherent 
grouping structure
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Measuring Clustering Quality
q Clustering Evaluation: Evaluating the goodness of clustering results

q No commonly recognized best suitable measure in practice

q Three categorization of measures: External, internal, and relative

q External: Supervised, employ criteria not inherent to the dataset

q Compare a clustering against prior or expert-specified knowledge (i.e., the 
ground truth) using certain clustering quality measure

q Internal: Unsupervised, criteria derived from data itself

q Evaluate the goodness of a clustering by considering how well the clusters are 
separated and how compact the clusters are, e.g., silhouette coefficient

q Relative: Directly compare different clusterings, usually those obtained via 
different parameter settings for the same algorithm
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Measuring Clustering Quality: External Methods 
q Given the ground truth T, Q(C, T) is the quality measure for a clustering C
q Q(C, T) is good if it satisfies the following four essential criteria
q Cluster homogeneity
q The purer, the better

q Cluster completeness 
q Assign objects belonging to the same category in the ground truth to the same 

cluster
q Rag bag better than alien 
q Putting a heterogeneous object into a pure cluster should be penalized more than 

putting it into a rag bag (i.e., “miscellaneous” or “other” category)
q Small cluster preservation
q Splitting a small category into pieces is more harmful than splitting a large category 

into pieces
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Commonly Used External Measures
q Matching-based measures
q Purity, maximum matching, F-measure

q Entropy-Based Measures

q Conditional entropy

q Normalized mutual information (NMI)
q Variation of information

q Pairwise measures

q Four possibilities: True positive (TP), FN, FP, TN

q Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure

q Correlation measures
q Discretized Huber static, normalized discretized Huber static

Ground truth partitioning T1 T2
Cluster C1 Cluster C2
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C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

Matching-Based Measures (I):  Purity vs. Maximum Matching

q Purity:  Quantifies the extent that cluster Ci contains points only 
from one (ground truth) partition:

q Total purity of clustering C:

q Perfect clustering if purity = 1 and r = k (the number of clusters 
obtained is the same as that in the ground truth)

q Ex. 1 (green or orange): purity1 = 30/50; purity2 = 20/25; 
purity3 = 25/25; purity = (30 + 20 + 25)/100 = 0.75

q Two clusters may share the same majority partition

11 1

1 max{ }
r r k

i
i ijji i

npurity purity n
n n =

= =

= =å å

q Maximum matching: Only one cluster can match one partition
q Match: Pairwise matching, weight w(eij) = nij

q Maximum weight matching:
q Ex2.  (green) match = purity =  0.75; (orange) match = 0.65 > 0.6

1

1 max{ }
k

i ijj
i

purity n
n =

=

C\T T1 T2 T3 Sum
C1 0 30 20 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 50 25 100
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M
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n

=

w(M) ( )
e M
w e

Î

=å

Ground Truth T1 T2
Cluster C1 C2 C3
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Matching-Based Measures (II): F-Measure
q Precision: The fraction of points in Ci from the majority partition      

(i.e., the same as purity), where ji is the partition that contains 
the maximum # of points from Ci

q Ex. For the green table
q prec1 = 30/50; prec2 = 20/25; prec3 = 25/25

q Recall:  The fraction of point in partition      shared in common 
with cluster Ci, where 

q Ex. For the green table
q recall1 = 30/35; recall2 = 20/40; recall3 = 25/25

q F-measure for Ci: The harmonic means of preci and recalli:
q F-measure for clustering C: average of all clusters:
q Ex. For the green table
q F1 = 60/85; F2 = 40/65; F3 = 1; F = 0.774

1
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Ground Truth T1 T2
Cluster C1 C2 C3



91

Entropy-Based Measures (I): Conditional Entropy
q Entropy of clustering C:

q Entropy of partitioning T:
q Entropy of T with respect to cluster Ci:
q Conditional entropy of T with respect to

clustering C:
q The more a cluster’s members are split into different partitions, 

the higher the conditional entropy
q For a perfect clustering, the conditional entropy value is 0, where 

the worst possible conditional entropy value is log k

 (i.e., the probability of cluster )
i

i
C i

np C
n

=

Ground Truth T1 T2
Cluster C1 C2 C3
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Entropy-Based Measures (II): 
Normalized Mutual Information (NMI)

q Mutual information:  
q Quantifies the amount of shared info between 

the clustering C and partitioning T
q Measures the dependency between the observed joint probability pij

of C and T, and the expected joint probability pCi . pTj under the 
independence assumption

q When C and T are independent, pij = pCi . pTj, I(C, T) = 0.  However, 
there is no upper bound on the mutual information

q Normalized mutual information (NMI)

q Value range of NMI: [0,1].  Value close to 1 indicates a good clustering

Ground Truth T1 T2
Cluster C1 C2 C3

1 1
( , ) log( )

i j

r k
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ij
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Pairwise Measures: Four Possibilities for Truth Assignment

q Four possibilities based on the agreement between cluster label and partition label
q TP: true positive—Two points xi and xj belong to the same partition T , and they 

also in the same cluster C

where yi: the true partition label , and      : the cluster label for point xi

q FN: false negative:
q FP: false positive
q TN: true negative

q Calculate the four measures:

2

1 1 1 1
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Ground Truth T1 T2
Cluster C1 C2 C3
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Pairwise Measures: Jaccard Coefficient and Rand Statistic

q Jaccard coefficient:  Fraction of true positive point pairs, but 
after ignoring the true negatives (thus asymmetric)

q Jaccard = TP/(TP + FN + FP)   [i.e., denominator ignores TN]
q Perfect clustering: Jaccard = 1 

q Rand Statistic:     
q Rand = (TP + TN)/N 
q Symmetric; perfect clustering: Rand = 1 

q Fowlkes-Mallow Measure: 
q Geometric mean of precision and recall

q Using the above formulas, one can calculate all the measures for 
the green table (leave as an exercise)

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

( )( )
TPFM prec recall

TP FN TP FP
= ´ =

+ +

Ground Truth T1 T2
Cluster C1 C2 C3
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Internal Measures (I): BetaCV Measure
q A trade-off in maximizing intra-cluster compactness and inter-cluster separation

q Given a clustering C = {C1, . . ., Ck} with k clusters, cluster Ci containing ni = |Ci| points

q Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

q The sum of all the intra-cluster weights over all clusters:   

q The sum of all the inter-cluster weights: 

q The number of distinct intra-cluster edges:

q The number of distinct inter-cluster edges:

q Beta-CV measure: 

q The ratio of the mean intra-cluster distance to the mean inter-cluster distance

q The smaller, the better the clustering
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Internal Measures (II): Normalized Cut and Modularity

q Normalized cut:

where vol(Ci) = W(Ci, V) is the volume of cluster Ci

q The higher normalized cut value, the better the clustering

q Modularity (for graph clustering)
q Modularity Q is defined as

where
q Modularity measures the difference between the observed and expected fraction 

of weights on edges within the clusters.
q The smaller the value, the better the clustering—the intra-cluster distances are 

lower than expected
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Relative Measure
q Relative measure: Directly compare different clusterings, usually those obtained via 

different parameter settings for the same algorithm

q Silhouette coefficient as an internal measure: Check cluster cohesion and separation
q For each point xi, its silhouette coefficient si is: 

where             is the mean distance from xi to points in its own cluster
is the mean distance from xi to points in its closest cluster

q Silhouette coefficient (SC) is the mean values of si across all the points:
q SC close to +1 implies good clustering

q Points are close to their own clusters but far from other clusters 
q Silhouette coefficient as a relative measure: Estimate the # of clusters in the data

min

min

( ) ( )
max{ ( ), ( )}

out i in i
i

out i in i

s µ µ
µ µ

-
=

x x
x x

( )in iµ x
min ( )out iµ x

1

1 n

i
i

SC s
n =

= å

1

j i

i j
x Ci

SC s
n Î

= å Pick the k value that yields the best clustering, i.e., yielding high 
values for SC and SCi (1 ≤ i ≤ k)



98

Cluster Stability
q Clusterings obtained from several datasets sampled from 

the same underlying distribution as D should be similar or “stable”
q Typical approach: 
q Find good parameter values for a given clustering algorithm

q Example: Find a good value of k, the correct number of clusters
q A bootstrapping approach to find the best value of k (judged on stability)
q Generate t samples of size n by sampling from D with replacement 
q For each sample Di, run the same clustering algorithm with k values from 2 to kmax

q Compare the distance between all pairs of clusterings Ck(Di) and Ck(Dj) via some 
distance function
q Compute the expected pairwise distance for each value of k

q The value k* that exhibits the least deviation between the clusterings obtained from 
the resampled datasets is the best choice for k since it exhibits the most stability
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Chapter 10. Cluster Analysis: Basic Concepts and Methods

q Cluster Analysis: An Introduction

q Partitioning Methods

q Hierarchical Methods

q Density- and Grid-Based Methods

q Evaluation of Clustering

q Summary
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Summary

q Cluster Analysis: An Introduction

q Partitioning Methods

q Hierarchical Methods

q Density- and Grid-Based Methods

q Evaluation of Clustering
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