
Founda'on of Data Engineering
MCF Riccardo Tommasini

h"p://rictomm.me

riccardo.tommasini@insa-lyon.fr

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

Apache Airflow

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 2

http://rictomm.me

What Airflow is...

Apache Airflow is a dataflow orchestrator to define data
engineering workflows, aka, [[Data Pipeline | Data Pipelines]]

Airflow allows to parallelize jobs, schedule them appropriately with
dependencies and historically reprocess data when needed.

Airflow glues all the data engineering steps, i.e., ingest, transform,
store.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 3

http://rictomm.me

What Airflow is not...

A data processing tool. No processing happens in airflow, so there's
no need for fault tolerance

Airflow does not provide any built-in workflow versioning

Airflow does not support streaming computa3on (talk later)1

1 The reason as to why Airflow does not support streaming is that there are no obvious behavior rules that could be
set so that the airflow scheduler could determinis:cally check if it has been completed or not.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 4

http://rictomm.me

The DAG

Airflow (and almost any orchestrato),
organizes the processing in a Directed
Acyclic Graph (DAG). Acyclicity is required
to reduce ambiguity.

Data engineering tasks are the graph nodes,
Edges represent dependency rela5onships,
e.g., if task 1 depends on task 2, then task 2
has to succeed.

Notably, "success" doesn't have to mean
that it has been succesfully completed. It
can mean that it hasn't been skipped, for
instance.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 5

http://rictomm.me

Airflow architecture

• Web server - nice GUI with access to
the logs and most of Airflow's
func;onality, such as stopping and
clearning DAGs.

• Scheduler - Puts the DAGs to ac;on by
coordina;ng the work to be done

• Workers - do the job assigned by the
scheduler.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 6

http://rictomm.me

Workflows

Workflows are wri,en en.rely in Python

The first thing to do is to instance the DAG, declaring a dic5onary with default arguments such as start date, concurrency and
schedule interval.

default_args_dict = {
 'start_date': airflow.utils.dates.days_ago(0),
 'concurrency': 1,
 'schedule_interval': None,
 'retries': 1,
 'retry_delay': datetime.timedelta(minutes=5),
}

first_dag = DAG(
 dag_id='first_dag',
 default_args=default_args_dict,
 catchup=False,
)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 7

http://rictomm.me

Idiosyncrasies

If you thought it would start at the moment of startdate, you thought
wrong, haha. The first task will actually start on startdate + schedule_interval.

In case you tried to run a DAG, for the first 6me, with a start date of let's
say, 1 month ago, and a schedule interval of 5 minutes, then airflow would
generate 8640 runs, which is the amount of 5 minute intervals within a
month.

In case you didn't put catchup=False you will be in for a treat next 6me
you start it, since airflow will re-run the DAG for n schedule intervals
between when you turned it off and the moment of turning it on again.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 8

http://rictomm.me

Backfilling

O"en, we might desire to revisit the historical
trends and movements. In such cases, we
would need to compute metric and
dimensions in the past,

Airflow has a recipe for Backfilling. You can
call the command

backfill -s START_DATE -e
END_DATE dag_id

from the cli, and it will rerun any DAG with
the specified dates, and that way you can very
effortlessly sa;sfy your tech lead's needs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 9

http://rictomm.me

Operators

DAGs describe how to run a data pipeline, operators describe what
to do in a data pipeline.

Operators trigger data transforma0ons, which corresponds to the
Transform step

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 10

http://rictomm.me

Operators: Sensors, Operators, and Transfers

• Sensors: waits for a certain /me, external file, or upstream data source

• Operators: triggers a certain ac/on (e.g. run a bash command, execute a python func/on, or execute a Hive query, etc)

• Transfers: moves data from one loca/on to another

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 11

http://rictomm.me

DummyOperator (1/2)

The simplest, yet not useless, operator that there is, is the dummy:

task_one = DummyOperator(
 task_id='get_spreadsheet',
 dag=first_dag,
 depends_on_past=False,
)

Operators are declared similarly as dags, and only require two arguments at first:

• task_id = unique id for the operator

• dag = which dag does does this operator belong to? Because there can be sub-dags, this
needs to be declared explicitly.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 12

http://rictomm.me

DummyOperator (2/2)

In prac(ce, the dummy operator does
nothing, but it can be used to do two
things:

• sketching a dag out

• trigger rule sorcery

More o&en than not we would like to
visualize an ETL process in the least 9me-
was9ng manner as possible.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 13

http://rictomm.me

Non Dummy Operators

Most of airflow's operators func2on in a similar way.

• PostgreSQL allows you to communicate with postgres
instances.

• BashOperator allows you to run shell scripts

• PythonOperator allows you to run Python code

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 14

http://rictomm.me

BashOperator

Let us define a non-dummy operator, that runs a bash command:

task_one = BashOperator(
 task_id='get_spreadsheet',
 dag=first_dag,
 bash_command="curl http://www.gerbode.net/spreadsheet.xlsx --output /usr/local/airflow/data/{{ds_nodash}}.xlsx",
 trigger_rule='all_success',
 depends_on_past=False

)

• bash_command- in case you know bash, you have already figured it out that this
works almost exactly as typing bash -c "some command"

• depends_on_past=False means that if it failed during the previous dag run then
it won't run this >me. This is important because, as we've seen, airflow can have
overlapping dag runs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 15

http://rictomm.me

Python Operator

The last part we have to go over is both the briefest and most important, the Python Operator:

Very similar to the bash operator, having task_id, dag, trigger_rule and depends_on_past, as pre5y much any other operator.

Python Operator takes a func2on as an input python callable, that is where the python part of the python operator lies at. The callable's
arguments are given by the op_kwargs dic2onary, which also allows you to template these arguments.

task_one = PythonOperator(
 task_id='get_spreadsheet',
 dag=second_dag,
 python_callable=_get_spreadsheet,
 op_kwargs={
 "output_folder": "/usr/local/airflow/data",
 "epoch": "{{ execution_date.int_timestamp }}",
 "url": "http://www.gerbode.net/spreadsheet.xlsx"
 },
 trigger_rule='all_success',
 depends_on_past=False,
)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 16

http://rictomm.me

Task Rela)onships

The directed rela,onships are given by the edges, and are very easily defined as follows, wri9en
at the end of the DAG file:

node_1 >> node_2 >> node_3 >> node_4

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 17

http://rictomm.me

Example

We want to show that the ETL process
starts with get_spreadsheet, then its
format is transmuted to a proper csv on
transmute_to_csv, which is then
filtered by <me, time_filter to be
loaded somewhere,load.

get_spreadsheet >> transmute_to_csv >> time_filter >> load

Will yield the following sequen2al
configura2on:

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 18

http://rictomm.me

N-Ary Rela+onships

many-to-one or one-to-many rela,onships are encoded as lists, so you can put to code that many nodes have an edge to one node as
follows:

[node_1, node_2, node_3] >> node_4 node_1 >> [node_2, node_3, node_4]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 19

http://rictomm.me

Example

Let's say that you have to create an ETL process en3rely
done in the cloud, and we define the following tasks:

• dataproc_start - we use the google CreateDataProc
operator in order to start a dataproc cluster that will be
used to run pyspark scripts.

• submit_ingest_one - next up we create a data
processing step to submit a pyspark job that will ingest
data from somewhere, and will also be processed further.
However, we want to make it so that if this fails, then
whatever comes next fails as well.

• submit_ingest_two, submit_ingest_three - the
same as submit_ingest_one except no other process
depends on it

• coalesce - aBer all tasks have finished their execuDon,
we would like to turn off the cluster.

We could define that with the following edge configura3on:

dataproc_start >>
 [dataproc_ingest_one, dataproc_ingest_two, dataproc_ingest_three]
dataproc_ingest_one
 >> dataproc_create_clickout

[dataproc_create_clickout,
 dataproc_ingest_two,
 dataproc_ingest_three] >> end

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 20

http://rictomm.me

Trigger Rules

Trigger rules are, in airflow-speech, a name for how should the node at the end of the edge behave when some exit status comes out
of its parents.

Trigger rules can be added to any operator with the argument trigger_rule, and there are quite a couple for you to choose from,
out of which the following are easily exemplified:

• all_success - use this when you want everything to work in the most obvious way as possible, and whatever you are doing
happens to be very linear.

• all_done - this is very o:en used whenever there's a cluster start or end job. For instance, let's say that irrespec?ve of the parent
tasks status, given that they have finished their execu?on, you would like this task to run anyways. It's commonly used to shut
down a cluster.

• none_failed - is most o:en than not paired with the branching operator. Maybe you will need to send the data through a
different path in the dag and thus it is acceptable to skip a chunk of it. If you want your dag execu?on to con?nue, you have to
make it so that the parent tasks were either skipped or successfully completed.

• all_failed - pair this one up with a callback so you can no?fy yourself of geFng fired

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 21

http://rictomm.me

Time To Prac+ce

• Let's go to h+ps://github.com/
riccardotommasini/airflowtp

• Clone or Download the repository

• Start Docker and wait

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 22

http://rictomm.me

