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Data (Engineering) Lifecycle
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What is data wrangling?

We need data in the form of Z

We have data in the form of A



What is data wrangling?

We need data in the form of Z

We have data in the form of A

A Z

Data wrangling
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What is data wrangling?

We want to…
• Change data format

27.09.2021  2021-09-27
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What is data wrangling?

We want to…
• Change data format

• Change data type
“500” 500

String Integer
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What is data wrangling?

We want to…
• Change data format

• Change data type

• Fix missing values

Name Age

Andres 33

Anna 44

Augustus ?
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What is data wrangling?

We want to…
• Change data format

• Change data type

• Fix missing values

• Fix duplicates

• Augment

Name

Andres

Anna

Augustus

Name

Mr. Andres

Ms. Anna

Dr. Augustus

BI
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What is data wrangling?

We want to…
• Change data format

• Change data type

• Fix missing values

• Fix duplicates

• Augment

• Group

• Aggregate

• Filter

Name Age

Andres 33

Anna 44

Name Age

Andres 33

Where age < 40
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What is data wrangling?

We want to…
• Change data format

• Change data type

• Fix missing values

• Fix duplicates

• Augment

• Group

• Aggregate

• Filter

• Join

OrderNumber CustomerId

2021_A 1

2021_B 2

2021_C 2

OrderNumber CustomerName

2021_A Andres

2021_B Anna

2021_C Anna

Id Name

1 Andres

2 Anna
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What is data wrangling?

We want to…
• Change data format

• Change data type

• Fix missing values

• Fix duplicates

• Augment
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Why is data wrangling 
necessary?
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The ML view:
• Models assume data in certain format

• Models should have as clean data as possible

How do data scientists spend their time?

Source:2021 State of Data Science Report

Anaconda 

N = 2 030



Why is data wrangling 
necessary?

The BI view:
• Data Insights Actions.

• Data needs to be usable

• Data needs to be trustworthy

• Data needs to be available
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Types of data wrangling
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Types of data wrangling

• Validity of values
• Phone numbers

• “+372 51234567”

• “00372 51234567”

• “512 345 67”

• 51234567

• ID codes and references
• PID (EE)

• Gender

• Date of birth

• Checksum

• Reference Number of the Invoice (EE)
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Types of data wrangling

• Consistent values
• Does zip code + city make sense?

• Can there be a sales order worth more than 1 
million euros?

• If a customer has conflicting e-mails in different 
systems, which system is correct?
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Types of data wrangling

• Duplicates
• Do we accept duplicates?

• Is it possible to set validity of data (updated 
timestamp)?

• Keep only one row (try to make the choice 
idempotent)

• Can we trust the source system to have unique
values?
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Types of data wrangling

• Business rules

• Does a premium customer have the associated 
premium services?

• Is this product allowed to have this discount?
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Types of data wrangling

• Conforming values

• If customer has conflicting emails in different 
systems, which system is correct?

• Is there a unique code across systems for
defining a … (product, customer, location, …)
• Eg product name in ERP vs sales system vs website?
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Types of data wrangling

• Missing data
• What is NULL?

• Is NULL acceptable?
• Aggregation over NULL is (usually) correct

• -1 (or similar) to use for referential integrity

• In data science/ML:
• Delete data

• Impute data

• Easiest/fastest: median
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Types of data wrangling

• Wrong data type
• Schema definition

• Load in csv without schema - everything is a string

• Inferring schema (eg Spark) can end up with wrong type

• Unit
• String vs integer vs decimal type

• A hundred pieces

• 100 pieces

• 100.55 pieces

• Timestamps
• UTC vs local

• UNIX timestamp
• Avro files – date/timestamp is integer. Eg how many days

since 1 January 1970 (ISO calendar)
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Types of data wrangling

• Wrong data structure
• Structured data

• CSV

• Excel
• Conventional database

• Nested data (semistructured data)
• JSON

• Parquet

• Struct, array (in Spark, BigQuery, etc)

• Unstructured data
• Text

• Images

• Audio/Video
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Types of data wrangling

• Aggregations
• Grouping

• Correct grouping columns (level of slice/dice)

• How will the data be used (visualization,
reporting, ML)

40



Types of data wrangling

• Validity of values

• Consistent values

• Duplicates

• Business rules

• Conforming values

• Missing data

• Wrong data type

• Wrong data structure

• Aggregations

• …

41
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Levels of data wrangling
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Levels of data wrangling

Abstractly – how far are you in the data 
wrangling process?

Various definitions, commonly 3 stages are 
defined



Levels of data wrangling

Abstractly – how far are you in the data 
wrangling process?

Various definitions, commonly 3 stages are 
defined

Source: Trifacta
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Source: Databricks



Levels of data wrangling

Source: Trifacta

Source: Databricks

OrderNumber OrderRevenue OrderTimestamp CustomerId

O_12345 150.00 2021-09-01T13:00:05+03:00 55

O_12346 230.00 2021-09-01T13:20:11+03:00 78

O_12347 170.00 2021-09-01T12:55:22+02:00 41

R_12346 230.00 2021-09-01T13:56:05+03:00 78

O_12348 50.50 2021-09-01T14:01:05+03:00 97

O_12349 450.23 2021-09-01T15:12:05+03:00 55
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Levels of data wrangling

Source: Trifacta

Source: Databricks

OrderNumber OrderRevenue OrderTimestampUTC CustomerId OrderType IsReturned

O_12345 150.00 2021-09-01 10:00:05 55 100 0

O_12346 230.00 2021-09-01 10:20:11 78 100 1

O_12347 170.00 2021-09-01 10:55:22 41 100 0

R_12346 -230.00 2021-09-01 10:56:05 78 400 NULL

O_12348 50.50 2021-09-01 11:01:05 97 100 0

O_12349 450.23 2021-09-01 12:12:05 55 100 0
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Levels of data wrangling

Source: Trifacta
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Source: Databricks

OrderNu 

mber

OrderReve 

nue

OrderTimestampUTC OrderDate Custome 

rId

OrderTy 

pe

IsReturn 

ed

O_12345 150.00 2021-09-01 10:00:05 2021-09-01 55 100 0

O_12347 170.00 2021-09-01 10:55:22 2021-09-01 41 100 0

O_12348 50.50 2021-09-01 11:01:05 2021-09-01 97 100 0

O_12349 450.23 2021-09-01 12:12:05 2021-09-01 55 100 0
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Considerations

Data wrangling approaches
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Data wrangling approaches

• Adhoc / exploratory / PoC

49



Considerations

Data wrangling approaches

• Adhoc / exploratory / PoC

• Production data engineering
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Considerations

Data wrangling approaches

• Adhoc / exploratory / PoC

• Production data engineering

Consider which tool to use for which purpose
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Considerations

• Staging area
• Temporary place for data

• Raw data from source(s)

• Transformation steps

• Important for following ELT (instead of ETL)
• Storage is cheap, compute is expensive

• Minimize impact on source systems

• Detect changes
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Considerations

• What happens if source data is updated?

Customers Orders
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Considerations

• What happens if source data is updated?

Customers Orders

CustomerId Zip code

5 10140

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00
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Considerations

• What happens if source data is updated?

Customers Orders

CustomerId Zip code

5 10140

CustomerId Zip code

5 51009

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00

5 20210902_001 4 500.00
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Considerations

• What happens if source data is updated?

Customers Orders

CustomerId Zip code

5 10140

CustomerId Zip code

5 51009

CustomerId Zip code

5 90210

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00

5 20210902_001 4 500.00

CustomerId OrderId OrderRevenue

5 20210901_001 2 000.00

5 20210902_001 4 500.00

5 20210903_001 300.00

56



Considerations

• What happens if source data is updated?

Customers Orders

Id CustomerId Zip code ValidFrom ValidTo

1 5 10140 2021-09-01 9999-12-31

CustomerId OrderId OrderRevenue

1 20210901_001 2 000.00

CustomerId OrderId OrderRevenue

1 20210901_001 2 000.00

2 20210902_001 4 500.00

CustomerId OrderId OrderRevenue

1 20210901_001 2 000.00

2 20210902_001 4 500.00

3 20210903_001 300.00

Id CustomerId Zip code ValidFrom ValidTo

1 5 10140 2021-09-01 2021-09-01

2 5 51009 2021-09-02 9999-12-31
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Id CustomerId Zip code ValidFrom ValidTo

1 5 10140 2021-09-01 2021-09-01

2 5 51009 2021-09-02 2021-09-02

3 5 90210 2021-09-033 9999-12-31



Considerations

• What happens if source data is updated?
• Slowly changing dimensions

• Type 0

• Always original – e.g. date of birth

• Type 1

• Always overwrite – simple but no history (often 
incorrect)

• Type 2

• New row – good for history, becomes complex

• Other types:

• history tables, history attributes, combinations
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Considerations

• How is data published to target?
• Fact and dimension tables

• ML model

• BI data files

• Kafka

• API

• …?
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Considerations

• Data wrangling is usually not a siloed activity. You need to 
consider
• Integration

• Where is data coming from? Which sources have the same data? Which
source holds the master data?

• Infrastructure
• Which systems hold the data? Which format is source data in? Which system

is used for transformation? On premise vs cloud vs hybrid infrastructure?

• Security
• Who has/should have access to source data? Who should have access to

data wrangling code?

• Exception handling
• What is the system criticality? Is it better to allow data wrangling to fail or

skip/ignore? Logging and notification of errors.

• Data Quality
• Are there contracts in place towards data source? What types of data quality

errors are allowed in the output data?

• Data modelling
• Kimball vs Inmon vs Data vault – which mindset/framework are we using? Do

we have a lot of streaming inserts? Do we have a lot of ad hoc querys?
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Considerations

• Where does data wrangling start from?
• Feedback loop to source system

• Issues arising from UI / user forms in source 
systems
• Web sites, Internal systems

• Enforcing data validations vs UX
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Abstract

• Pandas is one of the most 
popular data analysis tools

• It is open-source, written in 
python/C++

• It is flexible, powerful, fast, 
and quite easy-to-use.

• Pandas covers a number of 
use cases

• Data Analysis - What are the 
data about?

• Data Transformation - How 
do the data need to look 
like? 



idx Column-1

Row-1

Row-2

Row-n

Column-2 Column-n...

...

...

... ............

...

...

DataFrame

Index

Series

Pandas Data structure

w3resource.com

DataFrames

A DataFrame is a data structure that 
organises data into a 2-dimensional 

table of rows and columns, much like a 
spreadsheet. 

DataFrames are one of the most common 
data structures used in modern data 

analytics because they are a flexible and 
intuitive way of storing and working with 

data. 

— Databricks



DataFrame (cont.)

• They can handle any sort of tabular data

• They support (and can normalise) nested data
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