
Founda'on of Data Engineering
MCF Riccardo Tommasini

h"p://rictomm.me

riccardo.tommasini@insa-lyon.fr

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

- However, the data pipeline has
been quite an abstract concept so far
- We still miss the elements that
implements the pipeline (Airflow)
- We did not discuss concrete
problems like durability and
distribution

Recap

• The different roles of data engineer and scien3st

• Data quality iden3fies the "zones"

• How do traverse the conceptual zones: pipelines!

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 2

http://rictomm.me

A Conceptual View of a Data Pipeline

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 3

obsidian://open?vault=dataeng&file=Data%20Pipeline.md
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 4

http://rictomm.me

- Once again the big data challenges
impact the design of our pipelines
- The are all relevant at many levels,
but volume is the one that caused
most of the changes
- we need to relax some aspects of
the data systems

Towards a Physical View

• Big data have an essen.al role in
today's pipeline design

• As we said, this is not just about the
size!

• Volume: demands scalability of
storage

• Variety: calls for flexibility of schema

• Velocity: requires con.nuous
processing

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 5

http://rictomm.me

Towards a Physical View

Before digging into the details of the physical view, we need to
unveil two premises

• A Distributed System Premise: Big Data imply data par77oning

• A Data System Premise: Big Data dispute data modelling as it
was

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 6

http://rictomm.me

For very large datasets, or very high query
throughput, that is not sufficient
- Different partitions can be placed on
different nodes in a shared-nothing cluster
- Queries that operate on a single partition
can be independently executed. Thus,
throughput can be scaled by adding more
nodes.

Data Par''oning

breaking a large database down into smaller ones

The main reason for wan.ng to par..on data is
scalability13

13 Designing Data-Intensive Applica3ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 7

obsidian://open?vault=dataeng&file=Data%20Partitioning.md
https://dataintensive.net/
http://rictomm.me

What to know

• If some par,,ons have more data or queries than others the
par,,oning is skewed

• A par,,on with dispropor,onately high load is called a hot spot

• For reaching maximum scalability (linear) par,,ons should be
balanced

Let's consider some par00oning strategies, for simplicity we
consider Key,Value data.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 8

http://rictomm.me

Par$$oning Strategies

• Round-robin randomly assigns new keys to the par44ons.

• Ensures an even distribu4on of tuples across nodes;

• Range par//oning assigns a con4guous key range to each node.

• Not necessarily balanced, because data may not be evenly
distributed

• Hash par//oning uses a hash func4on to determine the target
par44on. - If the hash func4on returns i, then the tuple is placed

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 9

http://rictomm.me

Data Modeling

It is the process of defining the structure
of the data for the purpose of

communica4ng11 or to develop an
informa4on systems12.

12 between components of the informa3on system, how data is stored
and accessed.

11 between func+onal and technical people to show data needed for
business processes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 10

obsidian://open?vault=dataeng&file=Data%20Modeling.md
http://rictomm.me

What is a data model?

• A data model represents the structure
and the integrity of the data elements of
a (single) applica8ons 2

• Data models provide a framework for
data to be used within informa8on
systems by giving specific defini8ons
and formats.

• The literature of data management is
rich of data models that aim at providing
increased expressiveness to the modeller
and capturing a richer set of seman8cs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 11

x-bdsk://DBLP:journals/sigmod/SpynsMJ02
http://rictomm.me

Data models are perhaps the most
important part of developing so3ware.

They have such a profound effect not only
on how the so3ware is wri;en, but also
on how we think about the problem that

we are solving13.

— Mar&n Kleppmann

13 Designing Data-Intensive Applica3ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 12

https://dataintensive.net/
http://rictomm.me

Any Example?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 13

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 14

http://rictomm.me

Conceptual model is typically created by Business
stakeholders. The purpose is to organize, scope and define
business concepts and rules. Definitions are most important
this level.
Logical model is typically created by Data Architects. The
purpose is to developed technical map of rules and data
structures. Business rules, relationships, attribute become
visible. Conceptual definitions become metadata.
Physical model is typically created by DBA and developers.
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.

Level of Data Modeling

Conceptual: The data model defines
WHAT the system contains.

Logical: Defines HOW the system should
be implemented regardless of the DBMS.

Physical: This Data Model describes HOW
the informa5on system will be
implemented using a specific technology
14.

14 physical

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 15

https://www.databass.dev/
http://rictomm.me

The variety of data available
today encourages the design and
development of dedicated data
models and query languages that
can improve both BI as well as
the engineering process itself.

A Closer Look15

15 slides & video by Donna Burbank

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 16

https://www.slideshare.net/Dataversity/data-modeling-for-big-data
https://www.dataversity.net/ldm-webinar-data-modeling-big-data/
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 17

http://rictomm.me

Conceptual

• Seman'c Model (divergent)

• Describes an enterprise in terms of the language it uses (the
jargon).

• It also tracks inconsistencies, i.e., seman'c conflicts

• Architectural Model (convergent)

• More fundamental, abstract categories across enterprise

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 18

http://rictomm.me

Since it has a physical bias,
you might be tempted to
confuse this with the physical
model, but this is wrong.

Logical

Already bound to a technology, it typically refers already to
implementa7on details

• Rela&onal

• Hierarchical

• Key-Value

• Object-Oriented

• Graph
Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 19

http://rictomm.me

Physical

The physical level describes how data are Stored on a device.

• Data formats

• Distribu.on

• Indexes

• Data Par..ons

• Data Replica.ons

...an you are in the Big Data World

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 20

http://rictomm.me

Towards a Physical View

Before digging into the details of the physical view, we need to
unveil two premises

• A Distributed System Premise: CAP Theorem

• A Data System Premise: NoSQL%20SQL.md)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 21

CAP%20Theorem
No(t%20Only
http://rictomm.me

CAP Theorem (Brewer’s Theorem)
It is impossible for a distributed computer system to simultaneously provide all three of
the following guarantees:

• Consistency: all nodes see the same data at the same .me

• Availability: Node failures do not prevent other survivors from con.nuing to operate
(a guarantee that every request receives a response whether it succeeded or failed)

• Par11on tolerance: the system con.nues to operate despite arbitrary par..oning
due to network failures (e.g., message loss)

A distributed system can sa0sfy any two of these guarantees at the same 0me but not
all three.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 22

obsidian://open?vault=dataeng&file=CAP%20Theorem.md
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 23

http://rictomm.me

The network is not reliable

In a distributed system, *a network (of networks) * failures can, and
will, occur.

Since We cannot neglect Par//on Tolerance the remaining op/on
is choosing between Consistency and Availability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 24

http://rictomm.me

We cannot neglect Par--on Tolerance

Not necessarily in a mutually exclusive manner:

• CP: A par**oned node returns

• the correct value

• a *meout error or an error, otherwise

• AP: A par**oned node returns the most recent version of the
data, which could be stale.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 25

http://rictomm.me

Implica(ons of CAP Theorem

• change the transac,onality gurantees

• redesign the data workflow ()

• reimagine the data processing systems (noSQL)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 26

http://rictomm.me

The name “NoSQL” is unfortunate, since it
doesn’t actually refer to any particular
technology—it was originally intended simply
as a catchy Twitter hashtag for a meetup on
open source, distributed, non-relational
databases in 2009 Cf Pramod J. Sadalage
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN:
978-0-321-82662-6

The Advent of NoSQL

Google, Amazon, Facebook, and DARPA
all recognised that when you scale

systems large enough, you can never put
enough iron in one place to get the job

done (and you wouldn’t want to, to
prevent a single point of failure).

Once you accept that you have a
distributed system, you need to give up

consistency or availability, which the
fundamental transacFonality of tradiFonal

RDBMSs cannot abide.
 --Cedric Beust

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 27

obsidian://open?vault=dataeng&file=NoSQL.md
https://beust.com/weblog/2010/02/25/nosql-explained-correctly-finally/
http://rictomm.me

- Big Data: need for greater
scalability than relational databases
can easily achieve in write
 - Open Source: a widespread
preference for free and open source
software

The Reasons Behind

• Queryability: need for specialised query opera3ons that are not
well supported by the rela3onal model

• Schemaless: desire for a more dynamic and expressive data
model than rela3onal

• Flexibility: need to accomodate the "schema on read"
phylosophy

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 28

http://rictomm.me

Object-Rela+onal Mismatch

Most applica+on development today is done in object-oriented
programming languages

An awkward transla+on layer is required between the objects in
the applica4on code and the database model of tables, rows, and
columns

Object-rela+onal mapping (ORM) frameworks like Hibernate try to
mild the mismatch, but they can’t completely hide the differences

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 29

http://rictomm.me

the idea of NOSQL actually
originates in the late 60s
together with the raise of the
raise of object-oriented
languages, but become
popular later.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 30

http://rictomm.me

Shall we rethink the three-layered
modelling for Big Data?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 31

http://rictomm.me

Designing NoSQL Data
Structures

• NoSQL data structures driven by applica7on
design.

• Need to take into account necessary CRUD
opera7ons

• To embed or not to imbed. That is the
ques7on!

• Rule of thumb is to imbed whenever
possible.

• No modelling standards or CASEcase tools!

case computer aided so.ware engineering

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 32

http://rictomm.me

Data Modeling for Big Data

• Conceptual Level remains:

• ER, UML diagram can s4ll be used for no SQL as they output a model that
encompasses the whole company.

• Phsyical Level remains: NoSQL solu4ons oCen expose internals for obtaining flexibility,
e.g.,

• Key-value stores API

• Column stores

• Log structures

• Logical level no longer make sense. Schema on read focuses on the query side._

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 33

http://rictomm.me

NoSQL Familty

Kinds of NoSQL (2/4)

NoSQL solu*ons fall into four major areas:

• Key-Value Store

• A key that refers to a payload (actual content / data)

• Examples: MemcacheDB, Azure Table Storage, Redis, HDFS

• Column Store

• Column data is saved together, as opposed to row data

• Super useful for data analyKcs

• Examples: Hadoop, Cassandra, Hypertable

Kinds of NoSQL (4/4)

• Document / XML / Object Store

• Key (and possibly other indexes) point at a serialized object

• DB can operate against values in document

• Examples: MongoDB, CouchDB, RavenDB

• Graph Store

• Nodes are stored independently, and the relaEonship between nodes (edges) are stored with data

• Examples: AllegroGraph, Neo4j

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 34

http://rictomm.me

Complexity Across Families

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 35

http://rictomm.me

a natural evolutionary path
exists from simple key-value
stores to the highly
complicated graph databases,
as shown in the following
diagram:

Dependencies Across Families

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 36

http://rictomm.me

SQL vs NoSQL

SQL databases NoSQL databases

Triggered the need of rela/onal databases Triggered by the storage needs of Web 2.0 companies
such as Facebook,Google and Amazon.com

Well structured data Not necessarily well structured – e.g., pictures,
documents, web page descrip/on, video clips, etc.

Focus on data integrity focuses on availability of data even in the presence of
mul/ple failures

Mostly Centralised spread data across many storage systems with a high
degree of replica/on.

ACID proper/es should hold ACID proper/es may not hold[^62]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 37

http://rictomm.me

NoSQL & CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 38

http://rictomm.me

img 39

https://blog.nahurst.com/visual-guide-to-nosql-systems

The OLD ACID Model

• ACID, which stands for Atomicity, Consistency, Isola8on, and Durability1-1(app://obsidian.md/
index.html#fn-1-799ed3e7c985b657)

• Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

• Consistency (overused term), that here relates to the data invariants (integrity would be a beNer term
IMHO)

• Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

• Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.

• ^ The terms was coined in 1983 by Theo Härder and Andreas Reuter 6(app://obsidian.md/
index.html#fn-6-799ed3e7c985b657)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 40

obsidian://open?vault=dataeng&file=1-1.md
obsidian://open?vault=dataeng&file=6.md
http://rictomm.me

Ra#onale to Change

• It’s ok to use stale data (Accoun2ng systems do this all the 2me.
It’s called “closing out the books.”) ;

• It’s ok to give approximate answers

• Use resource versioning -> say what the data really is about – no
more, no less

• the value of x is 5 at 2me T

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 41

http://rictomm.me

The New BASE Model

BASE(Basically Available, So2-State, Eventually Consistent)

• Basic Availability: fulfill request, even in par3al consistency.

• So/ State: abandon the consistency requirements of the ACID model pre@y much completely

• Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID
proper3es67.

• purely aliveness guarantee (reads eventually return the requested value); but

• does not make safety guarantees, i.e.,

• an eventually consistent system can return any value before it converges

67 at some point in the future, data will converge to a consistent state;

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 42

http://rictomm.me

ACID vs. BASE trade-off

No general answer to whether your applica/on needs an ACID versus BASE
consistency model.

Given BASE ’s loose consistency, developers need to be more knowledgeable and
rigorous about consistent data if they choose a BASE store for their applica?on.

Planning around BASE limita.ons can some.mes be a major disadvantage when
compared to the simplicity of ACID transac.ons.

A fully ACID database is the perfect fit for use cases where data reliability and
consistency are essen6al.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 43

http://rictomm.me

Extra Reads

• History of Data Models by Ilya Katsov

• Life beyond Distributed Transac:ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 44

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://rictomm.me

Refining the Ini+al View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 45

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 46

http://rictomm.me

A Simplified view

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 47

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 48

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 49

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 50

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 51

http://rictomm.me

